【USACO15JAN】草鉴定Grass Cownoisseur(缩点+分层图?)

本文详细解析了一道图论竞赛题目,介绍了如何通过缩点、双SPFA算法求解最短路径,以及如何利用正反两发SPFA算法优化解题过程。文章深入探讨了从起点可达点逆行至可达起点的点的策略,并通过枚举计算最大值。

蒟蒻好紧张啊 蒟蒻好紧张啊 蒟蒻好紧张啊 蒟蒻好紧张啊

一开始方向好像走错了 乱推了个拓扑的式子 然后FST了

然后还不肯放弃 挣扎了20分钟 又受到了刚上来都打完球了的ldx的diss

"我靠,这么傻逼的题你还没A吗"

好吧的确是傻逼题

先缩点

设s是1所在的scc的编号

考虑逆行的使用姿势

对于一个可以从s出发到达的点 逆行到一个可以到达s的点

然后这个东西你可以跑正反两发spfa

最后枚举每个点 枚举出边 ans=max(ans,dis[i][1]+dis[vis][2]-num[s]);

注意是遍历反向边的数组

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define N 100005
using namespace std;
template<class T>
inline void read(T &x)
{
    x=0; int f=1;
    static char ch=getchar();
    while((!isdigit(ch)&&ch!='-'))  ch=getchar();
    if(ch=='-') f=-1,ch=getchar();
    while(isdigit(ch))  x=x*10+ch-'0',ch=getchar();
    x*=f;
}
int n,m,tot,first[N];
struct Edge
{
    int to,next;
}edge[2*N];
inline void addedge(int x,int y)
{
    tot++;
    edge[tot].to=y; edge[tot].next=first[x]; first[x]=tot;
}
int dfn[N],low[N],sign,cnt,belong[N],num[N];
stack <int> sta;
bool insta[N];
void dfs(int now)
{
    dfn[now]=low[now]=++sign;
    insta[now]=true;
    sta.push(now);
    for(int u=first[now];u;u=edge[u].next)
    {
        int vis=edge[u].to;
        if(!dfn[vis])
        {
            dfs(vis);
            low[now]=min(low[vis],low[now]);
        }
        else if(insta[vis]) low[now]=min(dfn[vis],low[now]);
    }
    if(dfn[now]==low[now])
    {
        int temp;
        cnt++;
        do
        {
            temp=sta.top();
            num[cnt]++;
            belong[temp]=cnt;
            insta[temp]=false;
            sta.pop();
        }while(temp!=now);
    }
}
bool inque[N];
vector <int> res1[N],res2[N];
int s,dis[N][3];
void spfa(int f,vector <int> *res)
{
    queue <int> q;
    q.push(s);
    memset(inque,0,sizeof(inque));
    dis[s][f]=num[s];
    while(!q.empty())
    {
        int now=q.front();
        inque[now]=false;
        q.pop();
        for(int i=0;i<res[now].size();i++)
        {
            int vis=res[now][i];
            if(dis[now][f]+num[vis]>dis[vis][f])
            {
                dis[vis][f]=dis[now][f]+num[vis];
                if(!inque[vis]) q.push(vis),inque[vis]=true;
            }
        }
    }
}
int main()
{
    read(n); read(m);
    for(int i=1,x,y;i<=m;i++)
    {
        read(x),read(y);
        addedge(x,y);
    }
    for(int i=1;i<=n;i++)   if(!dfn[i]) dfs(i);
    for(int i=1;i<=n;i++)
    {
        for(int u=first[i];u;u=edge[u].next)
        {
            int vis=edge[u].to;
            if(belong[i]!=belong[vis])  
            {
                res1[belong[i]].push_back(belong[vis]);
                res2[belong[vis]].push_back(belong[i]);
            }
        }
    }
    s=belong[1];
    spfa(1,res1); spfa(2,res2);
    int ans=num[s];
    for(int i=1;i<=cnt;i++)
    {
        if(dis[i][1]==0)    continue;
        for(int j=0;j<res2[i].size();j++)
        {
            int vis=res2[i][j];
            if(dis[vis][2]==0)  continue;
            ans=max(ans,dis[i][1]+dis[vis][2]-num[s]);
        }
    }
    cout<<ans;
    return 0;
}

转载于:https://www.cnblogs.com/Patrickpwq/articles/9926071.html

内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值