JobTracker作业调度分析

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Androidlushangderen/article/details/41408517

        JobTracker的作业调度给我感觉就是比较宏观意义上的操作。倘若你只了解了MapReduce的工作原理是远远不够的,这时去学习一下他在宏观层面的原理实现也是对我们非常有帮助的。首先我们又得从上次分析的任务提交之后的操作说起,Job作业通过RPC通信提交到JobTracker端之后,接下来会触发到下面的方法;

/**
   * 初始化作业操作
   */
  public void initJob(JobInProgress job) {
    if (null == job) {
      LOG.info("Init on null job is not valid");
      return;
    }
	        
    try {
      JobStatus prevStatus = (JobStatus)job.getStatus().clone();
      LOG.info("Initializing " + job.getJobID());
      //初始化Task任务
      job.initTasks();
      ......
接着会执行initTasks的方法,但不是JobTracker,而是JobInProgress类中的方法:

 /**
   * Construct the splits, etc.  This is invoked from an async
   * thread so that split-computation doesn't block anyone.
   */
  public synchronized void initTasks() 
  throws IOException, KillInterruptedException, UnknownHostException {
    if (tasksInited || isComplete()) {
      return;
    }
    ......
    
    jobtracker.getInstrumentation().addWaitingMaps(getJobID(), numMapTasks);
    jobtracker.getInstrumentation().addWaitingReduces(getJobID(), numReduceTasks);
    this.queueMetrics.addWaitingMaps(getJobID(), numMapTasks);
    this.queueMetrics.addWaitingReduces(getJobID(), numReduceTasks);

    //根据numMapTasks任务数,创建MapTask的总数
    maps = new TaskInProgress[numMapTasks];
    for(int i=0; i < numMapTasks; ++i) {
      inputLength += splits[i].getInputDataLength();
      maps[i] = new TaskInProgress(jobId, jobFile, 
                                   splits[i], 
                                   jobtracker, conf, this, i, numSlotsPerMap);
    }
    ......

    //
    // Create reduce tasks
    //根据numReduceTasks,创建Reduce的Task数量
    this.reduces = new TaskInProgress[numReduceTasks];
    for (int i = 0; i < numReduceTasks; i++) {
      reduces[i] = new TaskInProgress(jobId, jobFile, 
                                      numMapTasks, i, 
                                      jobtracker, conf, this, numSlotsPerReduce);
      nonRunningReduces.add(reduces[i]);
    }

    ......
    
    // create cleanup two cleanup tips, one map and one reduce.
    //创建2个clean up Task任务,1个是Map Clean-Up Task,一个是Reduce Clean-Up Task 
    cleanup = new TaskInProgress[2];

    // cleanup map tip. This map doesn't use any splits. Just assign an empty
    // split.
    TaskSplitMetaInfo emptySplit = JobSplit.EMPTY_TASK_SPLIT;
    cleanup[0] = new TaskInProgress(jobId, jobFile, emptySplit, 
            jobtracker, conf, this, numMapTasks, 1);
    cleanup[0].setJobCleanupTask();

    // cleanup reduce tip.
    cleanup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
                       numReduceTasks, jobtracker, conf, this, 1);
    cleanup[1].setJobCleanupTask();

    // create two setup tips, one map and one reduce.
    //原理同上
    setup = new TaskInProgress[2];

    // setup map tip. This map doesn't use any split. Just assign an empty
    // split.
    setup[0] = new TaskInProgress(jobId, jobFile, emptySplit, 
            jobtracker, conf, this, numMapTasks + 1, 1);
    setup[0].setJobSetupTask();

    // setup reduce tip.
    setup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
                       numReduceTasks + 1, jobtracker, conf, this, 1);
    setup[1].setJobSetupTask();
    
    ......
可以看见,在这里JobInProgress首次被划分为了很多的小的Task任务的形式存在,而这些小的任务是以TaskInProgress的类表示。在这里MapReduce把1个作业做出了如下的分解,numMapTasks个Map Task ,numReduceTasks个Reduce Task,2个CleanUp任务,2个SetUp任务,(Map Reduce,每个各占1个),好,可以大致勾画一下,1个JobInProgress的执行流程了。


     ok,initTask的任务已经完成,也就是说前面初始化的准备工作都已经完成了,后面就等着JobTacker分配作业给TaskTracker了。在这里MapReduce用的是HeartBeat的形式,就是心跳机制,心跳包在这里主要有3个作用:

1.判断TaskTracker是否活着

2.获取各个TaskTracker上的资源使用情况和任务的进度

3.给TaskTracker分配任务

而这里用到的就是第三作用。HeartBeat的调用形式同样是Hadoop自带的RPC实现方式。JobTracker不会直接分配作业给TaskTracker,中间会经过一个叫TaskScheduler掉调度器,这个可以用户自定义实现,满足不同的需求设计,在Hadoop中有默认的实现,所以你会看到大致这样的一个模型流程:


        所以接下来JobTracker首先会收到很多来自TaskTracker的心跳包,判断此TaskTracker是否是无任务状态的,无任务的话,马上让TaskSchedulera分配任务给他:

public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status, 
                                                  boolean restarted,
                                                  boolean initialContact,
                                                  boolean acceptNewTasks, 
                                                  short responseId) 
    throws IOException {
   ....
      
    //通过心跳机制发送命令回应
    // Initialize the response to be sent for the heartbeat
    HeartbeatResponse response = new HeartbeatResponse(newResponseId, null);
    List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
    boolean isBlacklisted = faultyTrackers.isBlacklisted(status.getHost());
    // Check for new tasks to be executed on the tasktracker
    if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) {
      TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName);
      if (taskTrackerStatus == null) {
        LOG.warn("Unknown task tracker polling; ignoring: " + trackerName);
      } else {
        List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
        //说明此TaskTtracker上无任务了
        if (tasks == null ) {
          //为此TaskTracker分配任务
          tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));
        }
接下来就是TaskScheduler的方法了,不过得找出他的实现类,TaskScheduler只是一个基类:

  public synchronized List<Task> assignTasks(TaskTracker taskTracker)
      throws IOException {
    TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus(); 
    ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
    final int numTaskTrackers = clusterStatus.getTaskTrackers();
    final int clusterMapCapacity = clusterStatus.getMaxMapTasks();
    final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks();

    //获取作业队列
    Collection<JobInProgress> jobQueue =
      jobQueueJobInProgressListener.getJobQueue();
     .....
        for (JobInProgress job : jobQueue) {
          if (job.getStatus().getRunState() != JobStatus.RUNNING ||
              job.numReduceTasks == 0) {
            continue;
          }

          
          //在这里分配了一个新的Reduce任务
          Task t = 
            job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers, 
                                    taskTrackerManager.getNumberOfUniqueHosts()
                                    );
          .....
首先获取一个作业列表,在里面挑出一个作业给,在比如从里面挑出1个Reduce的任务区给整个TaskTracker执行,因为我们刚刚已经知道,所有的Task都是以TaskInProgress形式被包含于JobInProgress中的,所以又来到了JobInProgress中了

/**
   * Return a ReduceTask, if appropriate, to run on the given tasktracker.
   * We don't have cache-sensitivity for reduce tasks, as they
   *  work on temporary MapRed files.  
   */
  public synchronized Task obtainNewReduceTask(TaskTrackerStatus tts,
                                               int clusterSize,
                                               int numUniqueHosts
                                              ) throws IOException {
    .....

    int  target = findNewReduceTask(tts, clusterSize, numUniqueHosts, 
                                    status.reduceProgress());
    if (target == -1) {
      return null;
    }
    
    //这里继续调用方法,获取目标任务
    Task result = reduces[target].getTaskToRun(tts.getTrackerName());
    if (result != null) {
      addRunningTaskToTIP(reduces[target], result.getTaskID(), tts, true);
    }

    return result;
  }
此时就执行了一个TIP就是TaskInProgress里面去执行了,此时的转变就是JIP->TIP的转变。继续往里看,这时候来到的是TaskInProgress的类里面了:

public Task getTaskToRun(String taskTracker) throws IOException {
    if (0 == execStartTime){
      // assume task starts running now
      execStartTime = jobtracker.getClock().getTime();
    }

    // Create the 'taskid'; do not count the 'killed' tasks against the job!
    TaskAttemptID taskid = null;
    if (nextTaskId < (MAX_TASK_EXECS + maxTaskAttempts + numKilledTasks)) {
      // Make sure that the attempts are unqiue across restarts
      int attemptId = job.getNumRestarts() * NUM_ATTEMPTS_PER_RESTART + nextTaskId;
      //启动一次TA尝试
      taskid = new TaskAttemptID( id, attemptId);
      ++nextTaskId;
    } else {
      LOG.warn("Exceeded limit of " + (MAX_TASK_EXECS + maxTaskAttempts) +
              " (plus " + numKilledTasks + " killed)"  + 
              " attempts for the tip '" + getTIPId() + "'");
      return null;
    }

    //加入到相应的数据结构中
    return addRunningTask(taskid, taskTracker);
  }
在这里明显的执行了所谓的TA尝试,就是说这是一次Task的尝试执行,因为不能保证这次任务就一定能执行成功。把这次尝试的任务ID加入系统变量中,就来到了addRunningTask,也就是说来到了方法执行的最末尾:

/**
   * Adds a previously running task to this tip. This is used in case of 
   * jobtracker restarts.
   * 添加任务
   */
  public Task addRunningTask(TaskAttemptID taskid, 
                             String taskTracker,
                             boolean taskCleanup) {
    .....
    //添加任务和taskTracker的映射关系
    activeTasks.put(taskid, taskTracker);
    tasks.add(taskid);

    // Ask JobTracker to note that the task exists
    //在JobTracker中增加一对任务记录
    jobtracker.createTaskEntry(taskid, taskTracker, this);

    // check and set the first attempt
    if (firstTaskId == null) {
      firstTaskId = taskid;
    }
    return t;
  }
在这里,就增加了任务和TaskTracker的一些任务运行信息的变量关系。后面就等着TaskTracker自己去把任务挑出来,执行就OK了,上面这个步骤从TIP->TA的转变。我们把这种结构流程叫做“三层多叉树”的方式结构。


整个作业的调度的时序关系图如下:



没有更多推荐了,返回首页