new可与乐扣笔记

NewCode

平衡树

 boolean IsBalanced_Solution(TreeNode root) {
        return getDepth(root) != -1;
    }
     
    private int getDepth(TreeNode root) {
        if (root == null) return 0;
        int left = getDepth(root.left);
        if (left == -1) return -1;
        int right = getDepth(root.right);
        if (right == -1) return -1;
        return Math.abs(left - right) > 1 ? -1 : 1 + Math.max(left, right);
    }

短路原理

当 与 第一个为0(false)时,后边的不会执行。用于以某种方式取消后边语句的执行。(可)

链接:https://www.nowcoder.com/questionTerminal/7a0da8fc483247ff8800059e12d7caf1?answerType=1&f=discussion
来源:牛客网

public class Solution {
    public int Sum_Solution(int n) {
        int sum=n;
        //n=1时直接返回1
        boolean flag=(sum>0)&&((sum+=Sum_Solution(n-1))>0);
        return sum;
    }
}

股票问题 DP?

本文参考自英文版

LeetCode:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/discuss/108870/Most-consistent-ways-of-dealing-with-the-series-of-stock-problems

很多读者抱怨股票系列问题奇技淫巧太多,如果面试真的遇到这类问题,基本不会想到那些巧妙的办法,怎么办?所以本文拒绝奇技淫巧,而是稳扎稳打,只用一种通用方法解决所用问题,以不变应万变。

这篇文章用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。

先随便抽出一道题,看看别人的解法:

int maxProfit(vector<int>& prices) {
    if(prices.empty()) return 0;
    int s1=-prices[0],s2=INT_MIN,s3=INT_MIN,s4=INT_MIN;
        

    for(int i=1;i<prices.size();++i) {            
        s1 = max(s1, -prices[i]);
        s2 = max(s2, s1+prices[i]);
        s3 = max(s3, s2-prices[i]);
        s4 = max(s4, s3+prices[i]);
    }
    return max(0,s4);

}

能看懂吧?会做了吗?不可能的,你看不懂,这才正常。就算你勉强看懂了,下一个问题你还是做不出来。为什么别人能写出这么诡异却又高效的解法呢?因为这类问题是有框架的,但是人家不会告诉你的,因为一旦告诉你,你五分钟就学会了,该算法题就不再神秘,变得不堪一击了。

本文就来告诉你这个框架,然后带着你一道一道秒杀。

这 6 道股票买卖问题是有共性的,我们通过对第四题(限制最大交易次数为 k)的分析一道一道解决。因为第四题是一个最泛化的形式,其他的问题都是这个形式的简化。

第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

一、穷举框架
首先,还是一样的思路:如何穷举?这里的穷举思路和上篇文章递归的思想不太一样。

递归其实是符合我们思考的逻辑的,一步步推进,遇到无法解决的就丢给递归,一不小心就做出来了,可读性还很好。缺点就是一旦出错,你也不容易找到错误出现的原因。比如上篇文章的递归解法,肯定还有计算冗余,但确实不容易找到。

而这里,我们不用递归思想进行穷举,而是利用「状态」进行穷举。我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)

比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

很复杂对吧,不要怕,我们现在的目的只是穷举,你有再多的状态,老夫要做的就是一把梭全部列举出来。这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K

n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
    for 1 <= k <= K:
        for s in {0, 1}:
            dp[i][k][s] = max(buy, sell, rest)

而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?

我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。读者可能问为什么不是 dp[n - 1][K][1]?因为 [1] 代表手上还持有股票,[0] 表示手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。

二、状态转移框架
现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。只看「持有状态」,可以画个状态转移图。

在这里插入图片描述

通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
              max(   选择 rest  ,           选择 sell      )

解释:今天我没有持有股票,有两种可能:
要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
              max(   选择 rest  ,           选择 buy         )

解释:今天我持有着股票,有两种可能:
要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。
这个解释应该很清楚了,如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。而且注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。

现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。

dp[-1][k][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0
dp[-1][k][1] = -infinity
解释:还没开始的时候,是不可能持有股票的,用负无穷表示这种不可能。
dp[i][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0 。
dp[i][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的,用负无穷表示这种不可能。
把上面的状态转移方程总结一下:
base case:
dp[-1][k][0] = dp[i][0][0] = 0
dp[-1][k][1] = dp[i][0][1] = -infinity
状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

读者可能会问,这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。现在完整的框架已经完成,下面开始具体化。

三、秒杀题目

第一题,k = 1

直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) 
            = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])

直接写出代码:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

显然 i = 0 时 dp[i-1] 是不合法的。这是因为我们没有对 i 的 base case 进行处理。可以这样处理:

for (int i = 0; i < n; i++) {
    if (i - 1 == -1) {
        dp[i][0] = 0;
        // 解释:
        //   dp[i][0] 
        // = max(dp[-1][0], dp[-1][1] + prices[i])
        // = max(0, -infinity + prices[i]) = 0
        dp[i][1] = -prices[i];
        //解释:
        //   dp[i][1] 
        // = max(dp[-1][1], dp[-1][0] - prices[i])
        // = max(-infinity, 0 - prices[i]) 
        // = -prices[i]
        continue;
    }
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

// k == 1
int maxProfit_k_1(int[] prices) {
    int n = prices.length;
    // base case: dp[-1][0] = 0, dp[-1][1] = -infinity
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        // dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        // dp[i][1] = max(dp[i-1][1], -prices[i])
        dp_i_1 = Math.max(dp_i_1, -prices[i]);
    }
    return dp_i_0;
}

两种方式都是一样的,不过这种编程方法简洁很多。但是如果没有前面状态转移方程的引导,是肯定看不懂的。后续的题目,我主要写这种空间复杂度 O(1) 的解法。

第二题,k = +infinity

如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
            = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])

我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

直接翻译成代码:

int maxProfit_k_inf(int[] prices) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
    }
    return dp_i_0;
}
第三题,k = +infinity with cooldown

每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])

解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1 。
翻译成代码:

int maxProfit_with_cool(int[] prices) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    int dp_pre_0 = 0; // 代表 dp[i-2][0]
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]);
        dp_pre_0 = temp;
    }
    return dp_i_0;
}
第四题,k = +infinity with fee

每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee)
解释:相当于买入股票的价格升高了。

在第一个式子里减也是一样的,相当于卖出股票的价格减小了。
直接翻译成代码:

int maxProfit_with_fee(int[] prices, int fee) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, temp - prices[i] - fee);
    }
    return dp_i_0;
}
第五题,k = 2

k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。我们直接写代码,边写边分析原因。

原始的动态转移方程,没有可化简的地方

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++)
    if (i - 1 == -1) { /* 处理一下 base case*/ }
    dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
    dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。这道题由于没有消掉 k 的影响,所以必须要对 k 进行穷举:

int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
    for (int k = max_k; k >= 1; k--) {
        if (i - 1 == -1) { 
            /* 处理 base case */
            dp[i][k][0] = 0;
            dp[i][k][1] = -prices[i];
            continue;
        }
        dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
        dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
    }
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];

如果你不理解,可以返回第一点「穷举框架」重新阅读体会一下。

这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况手动列举出来也可以:

dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

int maxProfit_k_2(int[] prices) {
    int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
    int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
    for (int price : prices) {
        dp_i20 = Math.max(dp_i20, dp_i21 + price);
        dp_i21 = Math.max(dp_i21, dp_i10 - price);
        dp_i10 = Math.max(dp_i10, dp_i11 + price);
        dp_i11 = Math.max(dp_i11, -price);
    }
    return dp_i20;
}

有状态转移方程和含义明确的变量名指导,相信你很容易看懂。其实我们可以故弄玄虚,把上述四个变量换成 a, b, c, d。这样当别人看到你的代码时就会一头雾水,大惊失色,不得不对你肃然起敬。

第六题,k = any integer

有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。现在想想,交易次数 k 最多有多大呢?

一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。

直接把之前的代码重用:

int maxProfit_k_any(int max_k, int[] prices) {
    int n = prices.length;
    if (max_k > n / 2) 
        return maxProfit_k_inf(prices);

    int[][][] dp = new int[n][max_k + 1][2];
    for (int i = 0; i < n; i++) 
        for (int k = max_k; k >= 1; k--) {
            if (i - 1 == -1) { 
                /* 处理 base case */
                dp[i][k][0] = 0;
                dp[i][k][1] = -prices[i];
                continue;
            }
            dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
            dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);     
        }
    return dp[n - 1][max_k][0];

}

至此,6 道题目通过一个状态转移方程全部解决。

四、最后总结

本文给大家讲了如何通过状态转移的方法解决复杂的问题,用一个状态转移方程秒杀了 6 道股票买卖问题,现在想想,其实也不算难对吧?这已经属于动态规划问题中较困难的了。

关键就在于列举出所有可能的「状态」,然后想想怎么穷举更新这些「状态」。一般用一个多维 dp 数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。想想这个过程,你是不是有点理解「动态规划」这个名词的意义了呢?

具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,无非还是穷举 + 更新,不过我们可以说的高大上一点,这叫「三维 DP」,怕不怕?这个大实话一说,立刻显得你高人一等,名利双收有没有。

PS:labuladong Github 仓库:fucking-algorithm,共 60 多篇

股票问题作者:labuladong
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/solution/yi-ge-fang-fa-tuan-mie-6-dao-gu-piao-wen-ti-by-l-3/
来源:力扣(LeetCode)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在现有省、市港口信息化系统进行有效整合基础上,借鉴新 一代的感知-传输-应用技术体系,实现对码头、船舶、货物、重 大危险源、危险货物装卸过程、航管航运等管理要素的全面感知、 有效传输和按需定制服务,为行政管理人员和相关单位及人员提 供高效的管理辅助,并为公众提供便捷、实时的水运信息服务。 建立信息整合、交换和共享机制,建立健全信息化管理支撑 体系,以及相关标准规范和安全保障体系;按照“绿色循环低碳” 交通的要求,搭建高效、弹性、高可扩展性的基于虚拟技术的信 息基础设施,支撑信息平台低成本运行,实现电子政务建设和服务模式的转变。 实现以感知港口、感知船舶、感知货物为手段,以港航智能 分析、科学决策、高效服务为目的和核心理念,构建“智慧港口”的发展体系。 结合“智慧港口”相关业务工作特点及信息化现状的实际情况,本项目具体建设目标为: 一张图(即GIS 地理信息服务平台) 在建设岸线、港口、港区、码头、泊位等港口主要基础资源图层上,建设GIS 地理信息服务平台,在此基础上依次接入和叠加规划建设、经营、安全、航管等相关业务应用专题数据,并叠 加动态数据,如 AIS/GPS/移动平台数据,逐步建成航运管理处 "一张图"。系统支持扩展框架,方便未来更多应用资源的逐步整合。 现场执法监管系统 基于港口(航管)执法基地建设规划,依托统一的执法区域 管理和数字化监控平台,通过加强对辖区内的监控,结合移动平 台,形成完整的多维路径和信息追踪,真正做到问题能发现、事态能控制、突发问题能解决。 运行监测和辅助决策系统 对区域港口与航运业务日常所需填报及监测的数据经过科 学归纳及分析,采用统一平台,消除重复的填报数据,进行企业 输入和自动录入,并进行系统智能判断,避免填入错误的数据, 输入的数据经过智能组合,自动生成各业务部门所需的数据报 表,包括字段、格式,都可以根据需要进行定制,同时满足扩展 性需要,当有新的业务监测数据表需要产生时,系统将分析新的 需求,将所需字段融合进入日常监测和决策辅助平台的统一平台中,并生成新的所需业务数据监测及决策表。 综合指挥调度系统 建设以港航应急指挥中心为枢纽,以各级管理部门和经营港 口企业为节点,快速调度、信息共享的通信网络,满足应急处置中所需要的信息采集、指挥调度和过程监控等通信保障任务。 设计思路 根据项目的建设目标和“智慧港口”信息化平台的总体框架、 设计思路、建设内容及保障措施,围绕业务协同、信息共享,充 分考虑各航运(港政)管理处内部管理的需求,平台采用“全面 整合、重点补充、突出共享、逐步完善”策略,加强重点区域或 运输通道交通基础设施、运载装备、运行环境的监测监控,完善 运行协调、应急处置通信手段,促进跨区域、跨部门信息共享和业务协同。 以“统筹协调、综合监管”为目标,以提供综合、动态、实 时、准确、实用的安全畅通和应急数据共享为核心,围绕“保畅通、抓安全、促应急"等实际需求来建设智慧港口信息化平台。 系统充分整合和利用航运管理处现有相关信息资源,以地理 信息技术、网络视频技术、互联网技术、移动通信技术、云计算 技术为支撑,结合航运管理处专网与行业数据交换平台,构建航 运管理处与各部门之间智慧、畅通、安全、高效、绿色低碳的智 慧港口信息化平台。 系统充分考虑航运管理处安全法规及安全职责今后的变化 与发展趋势,应用目前主流的、成熟的应用技术,内联外引,优势互补,使系统建设具备良好的开放性、扩展性、可维护性。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
好的,我会尽力回答你的问题。下面是一个用MPI编程的方式实现Jacobi叠代求解拉普拉斯方程的代码,此代码可以在16个进程上运行: ```c #include <stdio.h> #include <stdlib.h> #include <mpi.h> #define N 16 #define MAX_ITER 10 int main(int argc, char **argv) { int size, rank, i, j, iter; double u[N][N], u_old[N][N], u_new[N][N]; double h = 1.0 / (N + 1); MPI_Status status; // Initialize MPI MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Initialize the matrices for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { u_old[i][j] = u[i][j] = u_new[i][j] = 0.0; if (i == 0 || j == 0 || i == N - 1 || j == N - 1) { u_old[i][j] = u[i][j] = u_new[i][j] = 8.0; } } } // Distribute the work among the processes int rows_per_proc = N / size; int start_row = rank * rows_per_proc; int end_row = start_row + rows_per_proc; if (rank == size - 1) { end_row = N; } // Jacobi iteration for (iter = 0; iter < MAX_ITER; iter++) { // Exchange boundary values with neighboring processes if (rank > 0) { MPI_Sendrecv(&u_old[start_row][0], N, MPI_DOUBLE, rank - 1, 0, &u_old[start_row - 1][0], N, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, &status); } if (rank < size - 1) { MPI_Sendrecv(&u_old[end_row - 1][0], N, MPI_DOUBLE, rank + 1, 0, &u_old[end_row][0], N, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD, &status); } // Compute new values for interior points for (i = start_row + 1; i < end_row - 1; i++) { for (j = 1; j < N - 1; j++) { u_new[i][j] = 0.25 * (u_old[i - 1][j] + u_old[i + 1][j] + u_old[i][j - 1] + u_old[i][j + 1]); } } // Copy new values to old values for (i = start_row; i < end_row; i++) { for (j = 0; j < N; j++) { u_old[i][j] = u_new[i][j]; } } } // Gather results from all processes if (rank == 0) { for (i = 0; i < rows_per_proc; i++) { for (j = 0; j < N; j++) { u[i][j] = u_old[i][j]; } } for (i = 1; i < size; i++) { MPI_Recv(&u[start_row][0], rows_per_proc * N, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &status); start_row = i * rows_per_proc; for (j = start_row; j < start_row + rows_per_proc; j++) { for (int k = 0; k < N; k++) { u[j][k] = u_old[j][k]; } } } } else { MPI_Send(&u_old[start_row][0], rows_per_proc * N, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD); } // Print the final matrix if (rank == 0) { printf("Final matrix:\n"); for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { printf("%f ", u[i][j]); } printf("\n"); } } // Finalize MPI MPI_Finalize(); return 0; } ``` 在这个代码中,我们使用MPI实现了一个分布式的Jacobi迭代算法来解决一个16x16的拉普拉斯方程。每个进程计算一部分矩阵,并交换边界值以确保所有进程之间的一致性。最终,我们将结果从所有进程中收集到主进程,并打印出最终的矩阵。 希望这个代码能够帮到你!如果你有其他问题,欢迎随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值