最近几个月重点参加了几个AI行业比较有影响力的机构举办的行业大会,从一线感受到行业正在发生“静水流深”的变化,记录如下,供大家讨论:
1.头部洗牌基本完成。很少有人再提“AI四小龙”(商汤、旷视、依图、云从),C位变成了“AI六小虎”——月之暗面(Kimi)、百川智能(搜狗王小川)、智谱AI(清华系)、零一万物(李开复)、Minimax+阶跃星辰(都在上海,都是产品驱动)。
2.AI行业马太效应凸显。一边是行业智库的广告减少、大会酒店降级,一边是一些细分领域的企业持续融到钱。做大模型的面壁智能刚刚拿到数亿元融资,做AiPPT的爱设计业务扩张到全球10个地区……
3.AI应用目前体验都不好。B端用户对于现阶段的AI应用整体满意度并不高,也不愿意向同行推荐,对于这些产品能否提升自身业务,缺乏切实的感知(获得感)。
4.这反而意味着更多机会。AI鉴伪(看论文是不是AI生成)、AI情感陪伴(从软件到实物)等细分赛道都在跑出来。
5.商业转化成为关注重点。许多企业都从以往单纯关注产品的能力,转向客户需求驱动、关注PMF(Product Market Fit),指的是产品市场匹配度,即产品如何和市场需求相结合,从而实现商业化的落地。
6.如何选定用户类型。零一万物国外市场主做ToC(付费习惯等问题),国内市场做ToB,认为这样转化率最高。ToB最好能够帮用户赚钱,其次是帮TA省钱。(李开复)
7.竞争需要差异化。商业落地必须做差异化,不能用自己的短板和竞争对手的长板去竞争,比如模型做不过国外那些开源的,就没必要做。应该优先考虑那些不需要依赖大厂的优势、大厂也不打算马上做的赛道。(李开复)
8.人工智能走到今天已经发展了70年。从1956年逻辑推理的诞生到现在,AI技术的演变是漫长的,爆发是一瞬间的,爆发的前提正是遭遇了市场需求的变化,进而产生战略拐点。
9.AI投资机构也有不同倾向。专业投资机构更偏爱AI Infra(中间层,指链接算力和应用的中间层基础设施,包括硬件、软件、工具链和优化方法等,它的核心价值是让算力提质增效);头部大厂(BAT+字节等)投资初创公司则更偏爱AI应用层。
10:供给侧:全国的算力基建基本完成。截至2023年末,我国算力中心总体在用机架规模达810万架,“东数西算”网络基本建设完成,算力从供给数量上并不缺乏,但是分布可能不均匀、质量可能参差不齐,商业机会往往在这些结构性不均之中。
11.需求侧:算力迈向超万卡时代。万卡集群已经成为入门大模型训练的必要条件,目前中国市场对万卡集群有需求的客户主要有三类:BAT+字节等互联网企业,三大运营商,华为、科大讯飞等大型AI研发企业。百模大战不会再出现,未来大模型行业一定是寡头垄断。
12.结构侧:算力从大干快上到精细运营。算力生意不再像以前那么好做,现在算力厂商也逐渐意识到必须把AI生态搞起来,才能消纳算力。