HDU 2516 取石子游戏 (斐波那契博弈)---华为2014校招机试第三题

取石子游戏

Time Limit: 2000/1000 MS(Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2101    Accepted Submission(s): 1205


Problem Description

1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Secondwin".先取者胜输出"Firstwin".

 

 

Input

输入有多组.每组第1行是2<=n<2^31.n=0退出.

 

 

Output

先取者负输出"Secondwin". 先取者胜输出"Firstwin". 
参看Sample Output.

 

 

Sample Input

2

13

10000

0

 

Sample Output

Second win

Second win

First win

 

 

Source

ECJTU 2008 Autumn Contest

 

 

Recommend

lcy


这是一道Fibonacci’s Game(斐波那契博弈
斐波那契博弈模型,大致上是这样的:
有一堆个数为 n 的石子,游戏双方轮流取石子,满足:
1. 先手不能在第一次把所有的石子取完;
2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。
 
(转)分析:      
 n = 2时输出second;     
 n = 3时也是输出second; 
 n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何取,第一个人都能赢,输出first; 
 n = 5时,first不可能获胜,因为他取2时,second直接取掉剩下的3个就会获胜,当他取1时,这样就变成了n为4的情形,所以输出的是second;   
 n = 6时,first只要去掉1个,就可以让局势变成n为5的情形,所以输出的是first;      
 n = 7时,first取掉2个,局势变成n为5的情形,故first赢,所以输出的是first;     
 n = 8时,当first取1的时候,局势变为7的情形,第二个人可赢,first取2的时候,局势变成n为6得到情形,也是第二个人赢,取3的时候,second直接取掉剩下的5个,所以n = 8时,输出的是second;    
 …………      
 从上面的分析可以看出,n为2、3、5、8时,这些都是输出second,即必败点,仔细的人会发现这些满足斐波那契数的规律,可以推断13也是一个必败点。     
 借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。n=12时,只要谁能使石子剩下8且此次取子没超过3就能获胜。因此可以把12看成8+4,把8看成一个站,等价与对4进行"气喘操作"。又如13,13=8+5,5本来就是必败态,得出13也是必败态。也就是说,只要是斐波那契数,都是必败点。
所以我们可以利用斐波那契数的公式:fib[i] = fib[i-1] + fib[i-2],只要n是斐波那契数就输出second。
//华为2014校招机试题第三题,160分
#include<iostream>
#include<cstdio>
using namespace std;

int main()
{
	//这里为什么声明数列长度为48呢?因为计算到f[48]已经接近超出int的数据范围了
	int f[48];
	f[0] = 0, f[1] = 1;
	int i, n;
	for (i = 2; i < 48; i++)
	{
		f[i] = f[i-1] + f[i-2];
		//可以输出看看
		//cout<<f[i]<<' ';
	}
	//cout<<endl;
	while(scanf("%d",&n) == 1)
	{
		if(n == 0) break;
		bool flags = 0;
		//根据题目意思,n>=2的,所以从f[3] = 2开始
		for (i = 3; i < 48; i++)
		{
			if (n == f[i]) 
			{
				flags = 1;
				break;
			}
		}
		if(flags) cout<<"Second win"<<endl;
		else cout<<"First win"<<endl;
	}
	return 0;
}

做完这题,最好看看取石子游戏的拓展(各类博弈): http://wenku.baidu.com/view/249434d284254b35eefd3498.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值