Great Cow Gathering G 洛谷 - P2986

题目分析

注意到,共n个点,n-1条边,且为连通图,根据树的性质可以分析出:该图可视为一颗树。

选择一个节点为根,用dfs遍历每一个节点建树,那么每个节点到根的距离为父节点到根的距离+该节点到父节点的距离(根节点到自身的距离为0),并且顺便求出所需移动的总路程以及这个节点及其子节点的奶牛数量的和。

题目要求输出以一个点为中心,奶牛走过总路程的最小值。暴力的解法,就是,求出以每一个节点为中心所需的总路程,然后输出最小值。求出一个节点的时间复杂度为O(n),那么n个节点就是O(n*n),这个复杂度是无法接受的,需要更新算法。

换个角度想,在已有的树结构中,只需要通过旋转的方式改变根节点,就能计算出原根节点的一个子节点为中心所需的总路程。若将树分为两部分,一部分为以旋转后为根节点的节点为根节点的子树,另一部分为剩余的树,不难发现,旋转后,以新根节点为根节点的子树的所有奶牛全少走了新根节点到原根节点的路程,剩余的奶牛全多走了新根节点到原根节点的路程,那么,可以得到:

新总路程=原总路程+(新根节点到原根节点的路程)*(奶牛总数-2*以新根节点为根节点的子树的所有奶牛的数量)

这样,就可以以O(n)的复杂度,求出答案。

代码实现

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
long long n, u, v, val, ans = 0, num, c[100010], sum_cow = 0, s;
bool vis[100010];
struct tree {
    long long val;//到根节点的距离
    long long cow_num;//该节点及其子节点的奶牛的数量的和,在最后计算移动中心对答案的影响时,可作为权重
    vector<pair<long long,long long>>nx;//first记录该节点的孩子节点,second记录到孩子节点的距离
}t[100010];
void dfs1(long long u, long long v, long long val) {//dfs建树
    t[v].val = t[u].val + val;//该节点到根节点的距离等于该节点到父节点的距离+父节点到根节点的距离
    vis[v] = true;
    ans += t[v].cow_num * t[v].val;//记录下取n为根节点时所需的总路程
    for (long long i = 0; i < t[v].nx.size(); i++) {
        if (!vis[t[v].nx[i].first])dfs1(v, t[v].nx[i].first, t[v].nx[i].second);
    }
    t[u].cow_num += t[v].cow_num;
}
void dfs2(long long u,long long v,long long sum) {//dfs遍历树,求出以各个节点为中心时所需总路程,取最小值作为答案
    sum += (sum_cow - 2 * t[v].cow_num) * (t[v].val - t[u].val);//计算中心从u节点到v节点,对总路程产生的影响,
    ans = min(ans, sum);
    vis[v] = true;
    for (int i = 0; i < t[v].nx.size(); i++) {
        if (!vis[t[v].nx[i].first]) dfs2(v, t[v].nx[i].first, sum);
    }
}
int main() {
    cin >> n;
    for (long long i = 1; i <= n; i++) {
        cin >> t[i].cow_num;
        sum_cow += t[i].cow_num;
    }
    for (long long i = 1; i < n; i++) {
        cin >> u >> v >> val;
        t[v].nx.emplace_back(u, val);
        t[u].nx.emplace_back(v, val);
    }
    t[n].val = 0;//以n作为根建树
    vis[n] = true;
    for (long long i = 0; i < t[n].nx.size(); i++) {
        dfs1(n, t[n].nx[i].first, t[n].nx[i].second);
    }
    s = ans;
    for (int i = 1; i < n; i++)vis[i] = false;
    for (long long i = 0; i < t[n].nx.size(); i++) {//以n为起始点,推算其他节点为中心所需的总路程
        dfs2(n, t[n].nx[i].first, s);
    }
    cout << ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值