Artoria____
码龄6年
关注
提问 私信
  • 博客:408,510
    社区:1
    动态:7
    408,518
    总访问量
  • 68
    原创
  • 1,994,031
    排名
  • 171
    粉丝
  • 2
    铁粉

个人简介:All the injustices are caused by our own incompetence

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 目前就职: 佰聆
  • 加入CSDN时间: 2019-03-12
博客简介:

邱邱邱的博客

查看详细资料
个人成就
  • 获得424次点赞
  • 内容获得67次评论
  • 获得1,954次收藏
  • 代码片获得3,345次分享
创作历程
  • 5篇
    2021年
  • 11篇
    2020年
  • 65篇
    2019年
成就勋章
TA的专栏
  • 笔记
    1篇
  • layUI
  • 数据库
    3篇
  • MySQL
  • SQL
  • 机器学习
    2篇
  • 算法
    2篇
  • 深度学习
    5篇
  • Keras
    4篇
  • NLP
    13篇
  • Pandas
    2篇
  • Numpy
    4篇
  • SciPy
    1篇
  • 数据可视化
    20篇
  • Pyecharts
    1篇
  • Seaborn
    5篇
  • Tableau
    1篇
  • Matplotlib
    2篇
  • ECharts
    8篇
  • Python
    20篇
  • 标准数据类型
    5篇
  • 爬虫
    5篇
  • 其他
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

记录

为了1024勋章哈哈哈哈哈,划个水
原创
发布博客 2021.10.24 ·
429 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线性回归LinearRegression

对视频中线性回归算法的相关内容进行总结与记录文章目录一、理论基础二、实例2.1 一元线性回归2.1.1 推导过程2.1.2 代码实现(基于numpy)2.1.3 代码实现(基于sklearn)2.2 多元线性回归2.2.1 代码实现(基于numpy)2.2.2 代码实现(基于sklearn)一、理论基础回归通常是指利用某个函数,尽可能把数据样本点“串”在一起,用于描述输入变量和输出变量间的变化关系线性回归特点:用来把数据“串”起来的那个函数是线性的(一元线性回归(一个自变量) &a.
原创
发布博客 2021.08.16 ·
789 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MySQL基础操作

基于虚拟机执行ipconfig查看ip信息mysql -uroot -proot登录,u为user,p为password也可mysql -uroot -p,可隐藏输入密码\q退出也可通过win+r,输入sevices.msc进入服务,找到MySQL结束。show databases;可查看mysql服务器管理多少个数据库use db;选择数据库show tables;可查看当前数据库下有多少表此处需要注意,要先选择数据库,才能show tablessel.
原创
发布博客 2021.01.08 ·
562 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

SQL查询语句练习(二)

1. 找出供应商名称,所在城市SELECT 公司名称 AS 供应商名称, 城市 AS 所在城市FROM 供应商2. 找出华北地区能够供应海鲜的所有供应商列表。SELECT 公司名称 AS 供应商列表FROM 产品LEFT JOIN 供应商 ON 供应商.`供应商ID` = 产品.`供应商ID`LEFT JOIN 类别 ON 类别.`类别ID` = 产品.`类别ID`WHERE 类别.类别ID = 8AND 地区 = '华北'3. 找出订单销售额前五的订单是经由哪家运货商运送的
原创
发布博客 2021.01.04 ·
5605 阅读 ·
8 点赞 ·
2 评论 ·
36 收藏

SQL查询语句练习(一)

一、单表查询1. 查询订购日期在1996年7月1日至1996年7月15日之间的订单的订购日期、订单ID、客户ID和雇员ID等字段的值SELECT 订购日期,订单ID,客户ID,雇员ID FROM `订单` WHERE 订购日期 BETWEEN '1996-07-01' AND '1996-07-15'2.查询供应商的ID、公司名称、地区、城市和电话字段的值。条件是“地区等于华北”并且“联系人头衔等于销售代表”SELECT 供应商ID,公司名称,地区,城市,电话 FROM `供应商`WHER
原创
发布博客 2021.01.03 ·
12399 阅读 ·
12 点赞 ·
7 评论 ·
54 收藏

Keras知识结构

文章目录1. Keras网络结构2. Keras网络配置3. Keras预处理功能1. Keras网络结构2. Keras网络配置3. Keras预处理功能更多详情见这一篇博文。
转载
发布博客 2020.05.14 ·
340 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

常用三角公式、变形及图形

文章目录1. 公式2. 图形1. 公式2. 图形
转载
发布博客 2020.04.27 ·
840 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

知网查重原理以及降重举例

现在高校对于硕士和博士论文采用的检测系统,是由知网开发的。但该软件的具体算法,判定标准,以前一直不清楚,本文是从知网内部工作人员哪里拿到的,揭示了知网反抄袭检测系统的算法,如何判定论文是抄袭,以及如何修改来通过的秘籍。发出来造福大家。引用:1、对格式的要求知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。...
转载
发布博客 2020.04.26 ·
2671 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

EM算法推导详解

文章目录一、EM算法推导最近在看贝叶斯相关的论文,里面讲到了EM算法,就把李航的统计学习方法这本书里的有关EM算法的详细推导过程仔细研读一遍,收获颇丰!数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断。所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量。EM算法是一种迭代算法,用于含有隐变量的概率模型参...
原创
发布博客 2020.03.07 ·
947 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

基于RNN的MNIST实例

文章目录一、数据准备二、定义模型三、模型训练四、模型评估与预测MNIST 数据集来自美国国家标准与技术研究所,National Institute of Standards and Technology (NIST)。训练集 (training set) 由来自 250 个不同人手写的数字构成,其中 50% 是高中学生,50% 来自人口普查局 (the Census Bureau) 的工作人员。...
原创
发布博客 2020.02.27 ·
393 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

关于校外访问湖北经济学院校内图书馆资源的具体步骤

对于http://tsg.hbue.edu.cn/xwfw/list.htm中提到的远程访问的步骤,存在一定的变化,于是将现在可成功的完整步骤分享出来。首先还是进入该网站。出现以下界面。...
原创
发布博客 2020.02.23 ·
4077 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

基于CNN的CIFAR10实例

文章目录一、导入数据二、数据预处理三、模型的建立与编译四、模型的训练与预测一、导入数据首先先导入CIFAR10数据集from keras.datasets import cifar10(X_train, y_train), (X_test, y_test) = cifar10.load_data()print('图像数据格式:', X_train.shape)print("训练集:...
原创
发布博客 2020.02.23 ·
627 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

基于Keras Sequential模型的iris实例

文章目录一、导入数据二、预处理三、建立网络并训练模型四、模型评估以及效果评价五、模型的预测六、模型拟合过程的可视化一、导入数据以iris数据集为例,导入并切分数据。# 导入数据并拆分数据from sklearn import datasetsfrom sklearn.model_selection import train_test_splitiris = datasets.load...
原创
发布博客 2020.02.21 ·
1143 阅读 ·
5 点赞 ·
6 评论 ·
7 收藏

简单的softmax函数实现

在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。softmax的公式为:Softmax(zj)=ezj∑ezjSoftmax(z_j) = \frac{e^{z_j}}{\sum {e^{z_j}}}Softmax(zj​)=∑ezj​ezj​​...
原创
发布博客 2020.02.20 ·
1178 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习常见专业名词

输入层Input layer。即输入x的那一层。输出层Output layer。即输出y的那一层。隐含层Hidden layer。输入层和输出层之间不管隔了多少层都叫隐层。卷积Convolution。其实是一种特征提取的过程,通常会降低维度池化Pooling。是一种数据采样操作,有均值池化(Average Pooling),最大值池化(Max Pooling)...
原创
发布博客 2020.02.16 ·
1142 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

数据可视化各种图表对比总结

在对收集到的数据进行可视化的过程中,盲目的选择图表不仅仅图表的效果不好,甚至会产生误导。因此对在数据可视化的过程中常用的一些图表进行下总结柱状图适用场景:适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。优势:柱状图利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。劣势:柱状图的局限在于只适用中小规模...
原创
发布博客 2020.01.14 ·
9653 阅读 ·
6 点赞 ·
1 评论 ·
31 收藏

CountVectorizer & Tf-idfVectorizer & word2vec

CountVectorizer和Tf-idfVectorizer构建词向量都是通过构建字典的方式,比如在情感分析问题中,我需要把每一个句子(评论)转化为词向量,这两种方法是如何构建的呢?拿CountVectorizer来说,首先构建出一个字典,字典包含了所有样本出现的词汇,每一个词汇对应着它出现的顺序和频率。对于每一个句子来说,构建出来的词向量的长度就是整个词典的长度,词向量的每一维上都代表这一维...
转载
发布博客 2019.12.03 ·
370 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

情感分类实例——基于Logistics回归以及SVC

本篇博客分别将用三种模型分别进行情感分析目录一、朴素贝叶斯二、Logistics回归三、SVC在训练模型之前,先看下数据集的样子:正向评价和负向评价在两个sheet中。因此首先要将两个sheet合并并分别标注为1和0# 导入数据集import pandas as pd# 定义正向为1,负向为0dfpos = pd.read_excel('./购物评论.xlsx', sheet...
原创
发布博客 2019.12.03 ·
1311 阅读 ·
0 点赞 ·
1 评论 ·
15 收藏

Latex各种箭头符号总结

字符含义\uparrow↑\downarrow↓\Uparrow⇑\Downarrow⇓\updownarrow↕\Updownarrow⇕\rightarrow→\leftarrow←\Rightarrow⇒\Leftarrow⇐\leftrightarrow↔\Leftrightarro...
转载
发布博客 2019.11.29 ·
115112 阅读 ·
67 点赞 ·
3 评论 ·
335 收藏
加载更多