线性回归LinearRegression 对视频中线性回归算法的相关内容进行总结与记录文章目录一、理论基础二、实例2.1 一元线性回归2.1.1 推导过程2.1.2 代码实现(基于numpy)2.1.3 代码实现(基于sklearn)2.2 多元线性回归2.2.1 代码实现(基于numpy)2.2.2 代码实现(基于sklearn)一、理论基础回归通常是指利用某个函数,尽可能把数据样本点“串”在一起,用于描述输入变量和输出变量间的变化关系线性回归特点:用来把数据“串”起来的那个函数是线性的(一元线性回归(一个自变量) &a.
MySQL基础操作 基于虚拟机执行ipconfig查看ip信息mysql -uroot -proot登录,u为user,p为password也可mysql -uroot -p,可隐藏输入密码\q退出也可通过win+r,输入sevices.msc进入服务,找到MySQL结束。show databases;可查看mysql服务器管理多少个数据库use db;选择数据库show tables;可查看当前数据库下有多少表此处需要注意,要先选择数据库,才能show tablessel.
SQL查询语句练习(二) 1. 找出供应商名称,所在城市SELECT 公司名称 AS 供应商名称, 城市 AS 所在城市FROM 供应商2. 找出华北地区能够供应海鲜的所有供应商列表。SELECT 公司名称 AS 供应商列表FROM 产品LEFT JOIN 供应商 ON 供应商.`供应商ID` = 产品.`供应商ID`LEFT JOIN 类别 ON 类别.`类别ID` = 产品.`类别ID`WHERE 类别.类别ID = 8AND 地区 = '华北'3. 找出订单销售额前五的订单是经由哪家运货商运送的
SQL查询语句练习(一) 一、单表查询1. 查询订购日期在1996年7月1日至1996年7月15日之间的订单的订购日期、订单ID、客户ID和雇员ID等字段的值SELECT 订购日期,订单ID,客户ID,雇员ID FROM `订单` WHERE 订购日期 BETWEEN '1996-07-01' AND '1996-07-15'2.查询供应商的ID、公司名称、地区、城市和电话字段的值。条件是“地区等于华北”并且“联系人头衔等于销售代表”SELECT 供应商ID,公司名称,地区,城市,电话 FROM `供应商`WHER
知网查重原理以及降重举例 现在高校对于硕士和博士论文采用的检测系统,是由知网开发的。但该软件的具体算法,判定标准,以前一直不清楚,本文是从知网内部工作人员哪里拿到的,揭示了知网反抄袭检测系统的算法,如何判定论文是抄袭,以及如何修改来通过的秘籍。发出来造福大家。引用:1、对格式的要求知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。...
EM算法推导详解 文章目录一、EM算法推导最近在看贝叶斯相关的论文,里面讲到了EM算法,就把李航的统计学习方法这本书里的有关EM算法的详细推导过程仔细研读一遍,收获颇丰!数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断。所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量。EM算法是一种迭代算法,用于含有隐变量的概率模型参...
基于RNN的MNIST实例 文章目录一、数据准备二、定义模型三、模型训练四、模型评估与预测MNIST 数据集来自美国国家标准与技术研究所,National Institute of Standards and Technology (NIST)。训练集 (training set) 由来自 250 个不同人手写的数字构成,其中 50% 是高中学生,50% 来自人口普查局 (the Census Bureau) 的工作人员。...
关于校外访问湖北经济学院校内图书馆资源的具体步骤 对于http://tsg.hbue.edu.cn/xwfw/list.htm中提到的远程访问的步骤,存在一定的变化,于是将现在可成功的完整步骤分享出来。首先还是进入该网站。出现以下界面。...
基于CNN的CIFAR10实例 文章目录一、导入数据二、数据预处理三、模型的建立与编译四、模型的训练与预测一、导入数据首先先导入CIFAR10数据集from keras.datasets import cifar10(X_train, y_train), (X_test, y_test) = cifar10.load_data()print('图像数据格式:', X_train.shape)print("训练集:...
基于Keras Sequential模型的iris实例 文章目录一、导入数据二、预处理三、建立网络并训练模型四、模型评估以及效果评价五、模型的预测六、模型拟合过程的可视化一、导入数据以iris数据集为例,导入并切分数据。# 导入数据并拆分数据from sklearn import datasetsfrom sklearn.model_selection import train_test_splitiris = datasets.load...
简单的softmax函数实现 在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。softmax的公式为:Softmax(zj)=ezj∑ezjSoftmax(z_j) = \frac{e^{z_j}}{\sum {e^{z_j}}}Softmax(zj)=∑ezjezj...
深度学习常见专业名词 输入层Input layer。即输入x的那一层。输出层Output layer。即输出y的那一层。隐含层Hidden layer。输入层和输出层之间不管隔了多少层都叫隐层。卷积Convolution。其实是一种特征提取的过程,通常会降低维度池化Pooling。是一种数据采样操作,有均值池化(Average Pooling),最大值池化(Max Pooling)...
数据可视化各种图表对比总结 在对收集到的数据进行可视化的过程中,盲目的选择图表不仅仅图表的效果不好,甚至会产生误导。因此对在数据可视化的过程中常用的一些图表进行下总结柱状图适用场景:适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。优势:柱状图利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。劣势:柱状图的局限在于只适用中小规模...
CountVectorizer & Tf-idfVectorizer & word2vec CountVectorizer和Tf-idfVectorizer构建词向量都是通过构建字典的方式,比如在情感分析问题中,我需要把每一个句子(评论)转化为词向量,这两种方法是如何构建的呢?拿CountVectorizer来说,首先构建出一个字典,字典包含了所有样本出现的词汇,每一个词汇对应着它出现的顺序和频率。对于每一个句子来说,构建出来的词向量的长度就是整个词典的长度,词向量的每一维上都代表这一维...
情感分类实例——基于Logistics回归以及SVC 本篇博客分别将用三种模型分别进行情感分析目录一、朴素贝叶斯二、Logistics回归三、SVC在训练模型之前,先看下数据集的样子:正向评价和负向评价在两个sheet中。因此首先要将两个sheet合并并分别标注为1和0# 导入数据集import pandas as pd# 定义正向为1,负向为0dfpos = pd.read_excel('./购物评论.xlsx', sheet...
Latex各种箭头符号总结 字符含义\uparrow↑\downarrow↓\Uparrow⇑\Downarrow⇓\updownarrow↕\Updownarrow⇕\rightarrow→\leftarrow←\Rightarrow⇒\Leftarrow⇐\leftrightarrow↔\Leftrightarro...