学不可以已

多读书、多看报、少吃零食、多睡觉(Q群:532232743)

动态规划:钢条切割问题实现

钢条切割问题是这样的:

一段钢条可以被切割成若干长度不一的更短的钢条,给定一个价目表,问如何切割收益最大。其中价目表包括了长度为从i=1到i=n的钢条分别的价格Pi。比如P1=1,P2=5表示长度为1的钢条的价值为1,长度为2的钢条的价值为5。


这是一个典型的动态规划问题。

第一种方法是自顶向下的方法,假定我们已经知道了长度为K的钢条的最大收益,然后通过这个最大收益求解长度为K+1的钢条的最大收益。因此我们递归地定义了钢条的最大收益。虽然思想是由小求大,但是实际程序需要我们由顶向下求解。代码如下:

#include <iostream>
#include <stdio.h>
#include <memory.h>
#define N 100
int prices[N];              //长度为n的钢条的价格
int r[N];                   //长度为n时的最大收益
int cut_rod(int n);         //求最大收益
int answer[N];              //保存切割位置

int main()
{
    int n;
    while(1 == scanf("%d", &n))
    {
        memset(answer, 0, sizeof(answer));
        memset(r, -1, sizeof(r));
        for(int i = 1; i <= n; ++i)
            scanf("%d", &prices[i]);

        printf("%d\n", cut_rod(n));
    }
    return 0;
}

/* 自顶向下的递归求解算法 */
int cut_rod(int n)
{
    if(r[n] > 0)    //如果已经算过,直接返回
        return r[n];
    int temp = -1;
    if(0 == n)      //长度为0的钢条价格为0
        temp = 0;
    //下面的循环递归求解长度为n的钢条的最大收益
    for(int i = 1; i <= n; ++i)
    {
        int x = prices[i] + cut_rod(n - i);
        if(x > temp)
            temp = x;
    }
    r[n] = temp;
    return temp;
}
这种方法可以求得最大收益,但是构建最优切割方案是个麻烦的事情,所以还有一种非递归的方法,在求解最优子问题的同时,逐步构建了最优方案。


这种非递归的方法的思想和上面的思想相同,即由短求长,但是采用了非递归的方法。代码如下:

#include <iostream>
#include <stdio.h>
#include <memory.h>
#define N 100
int prices[N];                          //长度为n的钢条的价格
int r[N];                               //长度为n时的最大收益
int cut_rod_bottom_up(int n);           //求最大收益
int answer[N];                          //保存切割位置

int main()
{
    int n;
    while(1 == scanf("%d", &n))
    {
        memset(answer, 0, sizeof(answer));
        memset(r, -1, sizeof(r));
        for(int i = 1; i <= n; ++i)
            scanf("%d", &prices[i]);

        printf("%d\nBest Cut:", cut_rod_bottom_up(n));
        int x = 0;
        //输出最优方案的切割位置
        while(n > 0)
        {
            x += answer[n];
            printf("%d ", x);
            n = n - answer[n];
        }
        printf("\n");
    }
    return 0;
}
/* 自底向上的非递归求解算法 */
int cut_rod_bottom_up(int n)
{
    r[0] = 0;
    for(int i = 1; i <= n; ++i)
    {
        int x = 0;
        //下面的循环,求解长度为i的钢条的最大收益
        for(int j = 1; j <= i; ++j)
        {
            if(prices[j] + r[i-j] > x)
            {
                x = prices[j] + r[i-j];
                answer[i] = j;              //存储长度为i的钢条的左边的第一个切割位置
            }
        }
        r[i] = x;   //储存长度为i的钢条的最佳收益
    }
    return r[n];
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载,否则将被起诉。 https://blog.csdn.net/Artprog/article/details/49914061
个人分类: 算法&数据结构
上一篇动态规划:游艇租用问题
下一篇动态规划:最长公共子序列问题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭