简单归纳一下,捋清ROC曲线等于AUC指标(面积)
T:True 与事实相符
F:False 与事实不符
P:Positive 预测结果为正
N:Negative 预测结果为负
1.准确率 (Accuracy) (TP+TN)/(TP+FN+FP+TN)
2.精确率 TPR (Precision) 又叫查准率、真阳性率 TP/(TP+FP) "不可滥杀无辜"
3.召回率 (Recall) 又叫查全率 TP/(TP+FN) "宁可错杀一千,不放过一个"
4.假阳性率 FPR FP/(FP+TN)
TP 真正例 同真为真
TN 真反例
FP 伪正例
FN 伪反例 负负为正
ROC 曲线: TPR和FPR绘制的曲线就是ROC曲线
数据决定了模型能够到达的上线,而算法是逼近这个上限
本文详细介绍了ROC曲线的概念,它是由真阳性率(TPR)与假阳性率(FPR)绘制而成,用于评估二分类模型的性能。AUC,即ROC曲线下的面积,是衡量模型区分正负样本能力的一个重要指标。无论阈值如何变化,高AUC值表示模型性能优秀。理解ROC曲线和AUC对于优化模型和评估预测准确性至关重要。

被折叠的 条评论
为什么被折叠?



