生产线课职业规划

找工作 专栏收录该内容
26 篇文章 1 订阅

职业规划
技术人员需要以五年为一个技术周期,每个技术周期上都要上升一个技术层级,否则随时可能会被淘汰掉,各层级建议和要求如下:
• 应届生 - 扎实的技术基础,有技术热情。应届生技术人员我建议进入BAT这样的大型互联网公司,虽然辛苦点,但是工作几年后,技术能力和视野会大于很多工作10年的技术人员。
注意点:系统化的学习技术,研究技术而不是使用技术。
• 工作5年 - 在技术上做到知其然知其所以然,对用过的技术框架都能知道技术原理和优缺点,多实战少纸上谈兵,学会总结。具备独立分析和解决技术问题的能力。
注意点:很多候选人用过N年JDK,就认为自己精通JAVA,但是面试的时候发现JDK的源码都没看过。我面试阿里的时候,也不明白为啥要问JDK源码或垃圾回收机制,但是当我去解决复杂的线上问题时,我才发现对源码或原理不熟,很难查到问题所在。如果你在小公司或非互联网公司没有这样的技术场景,可以尝试提高下业务架构能力或者利用业余时间实战并钻研技术。
• 工作十年 - 有大型系统架构经验和技术亮点。架构经验需要在大公司有实战经验。技术亮点就是在某个技术上达到专家级别,当同事遇到某个技术问题会来咨询你,比如遇到Redis问题解决不了时会来找你。短短几句话要求非常高,招聘的时候很多技术人员都卡在这个阶段,需要有很好的技术积累和背景。
注意点:很多技术人员开始转向管理,结果技术和管理都是半桶水,技术首先要达到一定的深度再考虑管理方向。小公司技术总监,技术停留在用,很多技术原理都不知道,如何做技术规划呢?
• 工作十五年 - 要有很强的业务和技术规划能力,在公司内有影响力,可以影响团队和公司的技术发展方向。也可以尝试换下工作,去成长性好的公司做技术总监,扩展下技术视野。
• 十五年以上 - 这个我说不好,欢迎通过评论提建议。
• 程序员在英文里对应有三个单词:Coder、Programmer和Software Engineer,我觉得这三个词,生动形象地描述了程序员所需要经历的三个阶段,或者说三个境界——
• Coder:只要求能够熟练使用编程环境,精通几种编程语言、开发框架和开发库,擅长写代码就可以了。这个阶段的程序员能够按照既定的设计完成编码。
• Programmer:要求在coder的基础之上,精通设计模式、算法实现和编码技巧,并具备熟练应用的能力,这个阶段的程序员能够独立编码解决现实问题。
• Software Engineer:要求在掌握业务知识的前提下,理解为什么这么实现,在综合考虑架构实现,权衡开发成本后,为解决业务问题提出最优方案,并能与业务人员顺畅沟通,让业务人员理解方案。编码工作达到这个阶段,才能称得上是真正的程序员,才真正实现了从工作到职业的转变。
• 不可否认,这个世界上有一些天才的程序员,他们喝着咖啡,哼着歌,便完成了上面三个阶段的修炼。但绝大部分人,都需要为此付出巨大的时间和精力。能否成为职业的程序员,影响因素和方法论很多,各种学习类、技术类的总结遍地都是:主动思考、及时总结、制定规划等。但我认为其中最重要的是能否做到专注。
• 许多没有达到第三个阶段的程序员,就是因为受到各种因素诱惑,变得心猿意马,不够专注。因为不够专注,他们不在意做好自己本职工作,不在意锤炼自己的技能,不在意学习新兴的技术。慢慢的,他们会认为从事编码没有出路,进而毫无例外地把编程看成是体力劳动,只会粘贴拷贝代码,知其然而不知其所以然,导致技术停滞不前。在这样的状态下工作5年、10年,对于他们来说,没什么区别,程序员真的就是吃青春饭的码农。

初级程序员->小组组长->项目经理-->部门经理
其实我有很多想法,想过就在互联网行业里稳扎稳打,成为一个高级的工程师,成为一个全栈,再往上就升级成为项目经理或者产品经理,
工作第一年,可能问你String对象创建的理解,常用的框架是什么等等;
工作第二年,就问你Java内存分配机制是什么,类是如何加载的等等;
第三年,就问你常用的设计模式是什么,你在工作中充当什么角色,怎么独立完成一个模块等等;
可以看出——这是一个典型的程序员的成长过程:
使用Java—->深入理解Java积累经验——>独立设计分析能力——>独当一面的多面手!

  1. 发挥性格优势
  2. 挖掘职业兴趣
  3. 积累知识和技能
  4. 一个软件开发工程师,在自己知识图谱与技能树中,如果存在顶端优势现象,那当别人问你擅长什么时,你就可以信心满满地回答出来。而如果你的知识和技能还能在企业内超越其他程序员,形成群体内的比较优势或者顶端优势,那你的光芒一定照耀四方。
  5. 我承认,能做到第二步这种程度的人相对较少,所以,我们只讨论第一步:在自己的知识图谱与技能树中打造顶端优势。
  6. 毋庸讳言,软件开发工程师跳槽频率比大部分职业的从业者高一些,在不同的企业不同的行业为不同的用户开发不同的产品时,用到的知识和技能通常是不同的。这就会导致一种情形:什么都懂一点,什么都不精深,什么都能干一点儿,什么都干不专业。而知识越精深越有价值,技能越熟练产出率越高,现在以及将来是专业主义时代(参见大前研一的《专业主义》),如果我们能沿着一个方向积累知识锻炼技能,那就可以形成竞争优势,随着不断用心打磨,就会产生顶端优势,就越来越能解决问题,不可替代性就会越来越强,商业价值就越来越高,薪酬福利自然越来越好。
  7. 所以,工作一段时间之后,就要思考自己的职业目标,梳理自己的知识和技能,选择几样,着重培养,持续精进,形成优势。
    对互联网公司来讲,最重要的是产品,那就对应有两个职位——产品经理和软件开发——很受重视。所以你到这样的公司里去做软件开发,就和到房地产公司感觉不一样。

女程序员比男程序员做事更有条理,更有计划,也更能认真、踏实的完成一件事。还有,女程序员会相对及时地反馈自己的状态。我可以说,女程的秩序感更强吗?
逻辑能力与抽象思维稍差,整体把握能力稍差。女程可以很好的做一个功能相对确定、不太复杂的模块,可以在某个不太难的技术方向上做到很好。但对于开发过程中不确定性大的工作,做起来相对困难,比如为产品试验、选择技术方案等探路性工作,多数没有男生做得好;比如架构一个系统,有时会考虑不够周到、长远。
前面我们贴了个图,说明男女之间逻辑思维与表达能力的差别。这种差别带来的结果是,女程与人沟通时更容易被理解,比如与测试沟通,与产品经理沟通,与男程沟通。因为女程可以把心中的想法更好地组织和表达,而男程经常是心中想法万万千,可是没有一点能说穿……
女程相对“保守”,包括对新技术的态度,包括对工作量的评估,包括对风险的忧虑,对稳定性的追求……
曾经,我们项目组的几个女生都很出色,工作能力、态度、输出结果都挺好。不知道别处是什么情况……
说这么多,其实我想说的是,女程有自己的特点,工作中应当让她们做适合她们特点的事情,人尽其用,这样最好。哎,扯多了发现这个结论其实不但对女程适用,白瞎了题目了。
--------------------- 本文来自 foruok 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/foruok/article/details/43407179?utm_source=copy
其实每个人都是不同的,每个个体都有自己的独特性,我们应当发现每个人的长处,让大家在工作中发挥长处,让每个人都感到有用武之地,这样一个团队才会有持续前进的基础和动力。

规划路线

 范范的讲,老四样路线:1.技术线路。2.业务路线。 3.实施路线。4、销售路线。

IT这个行业技术更新很快,技能永远没有最高。挖掘和发挥女性自身的优势,才能立足于这个看起来男性主导的IT圈,当然,同时也需要自身不断的学习、积累和提高。
那女IT的优势在哪里呢?女性在细心和耐力方面比男性表现得更为突出。女性在技术管理方面更有优势。女性完全可以胜任上述规划路线的2、3、4。

   下图是我在曾经读到一篇很经典的文章的时候情不自禁截下的,很抱歉我已经搜不到那篇文章的源地址,如果有朋友读过或发现了请告诉我链接,我会尊重作者附上链接。 --------------------- 本文来自 念茜 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/yiyaaixuexi/article/details/7044415?utm_source=copy

很明显的一点,男性往往追求的是技巧(skill)的提升,而女性的优势则是ability(能力)。我周围的男IT们大多都有过或长或短的那么一段热血情长的编程经历。他们是IT界的钢铁战士,打了鸡血一般天天只睡3、4个小时,写代码,钻研技术,精神食粮远远重于物质食粮。(我记得我的老师曾经说过,他的一位研究linux内核的朋友,研究了2年最后成了哲学家……)但是女性对于技术钻研的狂热,似乎没有男性那么持久。这里不除去一些外界因素:比如家庭、身体状况等等。拼技术精通程度也许我们没有胜算,但是我们完全可以撑起那另外半边天。

    在起步作软件工程师的3-5年里,自我学习,收集信息完善大脑知识网络。自我领导,诚信自律,沟通协作,不懂得协作又怎能妥善管理团队?通过作软件工程师的磨练,以一个崭新的面貌迎接职业生涯的重要拐点。发挥我们的团队领导力,转型的工作方向可大致分为:项目管理、测试管理和实施管理等。在领导团队的同时,在不断的平衡和协调中,自己的造诣也会得到大幅提升。到达业务领导的范畴时,依据个人能力的长处和兴趣而定到底可以胜任什么岗位。
 
    谁老说女程序员不仅脾气大还拖后腿?在这里我要给还没毕业的准女程们一些信心:我所在的团队里3个妞妞都是主力,经常帮男程们解决各种各样的问题。对了,不知你知道否?世界上第一个程序员是女的。英国著名诗人拜伦的女儿Ada Lovelace曾设计了巴贝奇分析机上解伯努利方程的一个程序。她甚至还建立了循环和子程序的概念。由于她在程序设计上的开创性工作,Ada Lovelace被称为世界上第一位程序员。不管你信不信,反正我是信了~

  不可否认的事实是,女性是这个行业里不可缺少的一分子,我们创造的价值也在继续让团队乃至整个行业受益。 --------------------- 本文来自 念茜 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/yiyaaixuexi/article/details/7044415?utm_source=copy

女性程序员—转型早晚成为必然
在中国,程序员不适合绝大多数女性,爆大的项目压力、24X7的项目进度、不断损失健康才能完成的编码任务。无论是从身体上,还是从社会要求、应承担的家庭责任方面,Coding于女性而言,都不适合。做4、5年可以,积累自己可以,不能、也不应该成为终生职业。

女性QA—理想的发展之路一
QA可以成为技术女性的选择之一。大部分QA都是女性,原因可能是她们擅长沟通、能体量程序员的压力,做过程序员的女性有过开发经历,更能体会其中辛苦,用程序员能理解的方式与程序员沟通。
同时,因为好的QA一将难求,做过开发的QA非常容易拿到自己理想的薪水。压力相对程序开发,也会更合理、更适合女性。

女性项目经理—理想的发展之路二
对技术能力很强,又超级喜欢开发的女性而言,项目经理无疑是上乘之选。即可以让自己摆脱低层垒代码的工作,又可以做为技术顾问解决些项目难题。在不断提升自己技术水平的同时,提升自己管理能力,为走向管理岗位打下基础。

在此只列举以上三种情况,希望给大家一些启发,找到一条适合女性自己的职业发展之路。
--------------------- 本文来自 jobchanceleo 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/jobchanceleo/article/details/1524113?utm_source=copy

大龄四条出路:做管理,做咨询,继续写程序,自己创业
1、做管理是绝大多数人的选择
职业规划
5年2019 项目经理 对此行业领域的业务流程熟悉,项目架构能力强
4年2018 年薪15W 在公司有一定的不可或缺型
3年2017 Team Leader 在某个领域有很丰富的经验,技术水平提高
1年2015 站稳脚跟,落地 掌握当下流行技术,适应开发行业
学校2014 顺利毕业,准备求职 毕业论文优秀,银从,软考,项目经验,熟悉某一领域

2、做咨询(行业分析师)
一、行业经验。熟悉行业规律,了解客户需求(高质量的客户需求报告,客户研究报告)
二、知识结构。在知识结构方面应同时具备心理学、经济学、社会学和管理学等多方面的专业知识。(行业分析,市场研究)
三、沟通能力。行业分上下游、产业链,人脉积累,行业分析师作为信息的发布者,必须先是信息的收集者和整理者。因此,一定要重视维护经营信息资源。
四、基本技能。敏捷的思维,较强的洞察力,掌握数据分析方法,一定的外语交流能力。(SPSS,SAS)
职业规划
5年2019 数据分析师 对此行业领域的业务流程熟悉,较强的商业分析、归纳和总结能力,统计分析能力
4年2018 年薪15W 在公司有一定的不可或缺型,积累人脉,考虑读MBA,了解商业运作
3年2017 Team Leader 在某个领域有很丰富的经验,技术水平提高,并了解整个行业概况方向
1年2015 站稳脚跟,落地 掌握当下流行技术,适应开发行业
学校2014 顺利毕业,准备求职 毕业论文优秀,银从,软考,项目经验,熟悉某一领域,重视英语,统计学习

3、继续写程序(外企)
以JAVA为例
1、熟悉JSP/Servlet/EJB和JavaScript等WEB开发技术
2、熟系Spring,Struts和Hibernate等主流的开发框架
3、对Java面向对象软件结构有深入理解以及很强的应用能力 -熟系数据库oracle,mysql其中一种
4、拥有优秀的数据库设计能力 -了解TCP/IP、HTTP等协议
5年2019 高级工程师 对此行业领域的业务流程熟悉,修复BUG
4年2018 年薪15W 在公司有一定的不可或缺型,重视英语学习,某一领域编程技术精通
3年2017 Team Leader 在某个领域有很丰富的经验,技术水平提高,并了解整个行业概况方向
1年2015 站稳脚跟,落地 掌握当下流行技术,适应开发行业,了解国外最新动向
学校2014 顺利毕业,准备求职 毕业论文优秀,银从,软考,项目经验,重点熟悉某一领域,重视英语
想靠技术吃饭,不是技术好工作经验多就行那么地简单。一方面得坚持自己的专业方向,比如做游戏就一直做游戏,做网络就一直做网络,做运维就一直做运维等等,其它方向的工作我根本就不怎么考虑,这样才能在一个方向上积累下来;另一方面也要注意行业经验的积累,尽量全面地把握整个行业和各种细枝末节,这才是真正的经验资本——否则单纯写程序,几千块钱抓个人来就搞定,非得用你?

4、自己创业
需要天时(机遇),地利(所处的行业,所拥有的资源),人和(人脉)缺一不可。
--------------------- 本文来自 ch3rry 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/ds1130071727/article/details/48084773?utm_source=copy

1、 技术,我承认自己的逻辑思维不是特别的强,创造性也不是很好,技术方向成为大牛几乎是不太可能,而且技术大牛也不是我的追求方向。
2、 2、需求,这种专职的工作很少,又需要具有行业背景,我想继续在金融圈混,而银行和保险的业务我都懂的不多。
3、 3、产品,产品方面我只是在刚工作那会做过产品原型,对这个方向不是很了解,不知道都需要具备哪些技能。
4、 4、DBA,我比较喜欢数据库,但是平时也就是对SQL语句的增删改查,还有一些简单的优化,其他都不是很了解。
5、 5、项目管理,我带过小项目,5、6个人的小团队,也学习过很多管理方面的经验,但是从来没有担任过项目经理,有理论基础没有实践经验。希望各位过来的大神们帮我指点下迷津,给我一个转型的方向,不限于我说的这5个方向,多谢各位了! --------------------- 本文来自 萍萍900531 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/qq_33851927/article/details/80510274?utm_source=copy

1、 走向架构师
对于任何一个Java开发人员来说,架构师都是一个令人向往的角色。那么从程序员与架构师有没有比较明显的区别呢?其实架构师和程序员的界限并不是很大,比如现在仍然在每天写代码。其实成长首先来自于自身的学习,而阅读成熟项目的代码会使人受益匪浅,其次就是来自于所从事领域的经验,要了解分布式系统的特点,在做项目时,要能够关注性能、扩展性、可靠性、可用性等指标。
架构师其实就是一个漫长的积累过程,从准备期到动荡期我们都是不停的探索,学习。大部分的架构师的年龄都是在35岁左右,这个阶段就是程序员的黄金期。那么我们如何以一个架构师的标准来加强自己的能力呢?程序员要成为一名架构师发展,需要进一步加强技能的修养。,对于互联网公司来言,最重要的技能是对网络和分布式系统的理解,网络上面的书籍很多,比较麻烦的是分布式系统,除了分布式在现在大型互联网企业中,对于技术知识,个人推荐还得掌握高性能、深入浅出。性能调优、Spring,JVM等技术。当然了,良好的驾驭管理开发团队的能力,良好的人格修养,能够让架构师在开发项目中游刃有余,不会出现意料之外的干扰,更能从内散发出人格魅力。
2、 走向项目经理
也有一些程序员工作机遇比较好,不但负责了项目的设计工作,而且负责了项目管理工作。对项目经理这个工作有了一定的尝试。因此,这类程序员可以审视一下自己,是否合适这项工作。如果自己对这种工作比较满意,而且具备项目经理的要求,则可以向项目经理这个方向发展。项目经理承担着项目管理的职责,对项目负主 要责任。它和程序员的作用也不相同,项目经理的重点已经从编程转移到对人、对技术、对进度、对项目的管理。由于软件的项目经理与软件项目的相关性太大,因 此,他必须要了解软件开发的各个环节、了解开发的各种技术和运用、了解开发队伍人员的水平和特点。所以他依旧和程序员脱不了干系。从程序员到项目经理可以使得项目经理更好地理解程序员在项目中的地位和作用,了解软件开发的各种规律性的东西。从而保证项目的正常完成。而且,项目经理的收入在公司中的地位也是 比较高的。因此,我认为走向项目经理是程序员的另一个发展空间。我想提醒一下,程序员在担任项目经理之前最好要把软件设计工作做好,这样在做项目经理的时 候,就会有很好的基础。
3、 走向管理者
很多程序员希望自己能成为公司中的主管、经理、老总、老板,这样无论是收入和在公司的地位都相对比较高一些。另外,一方面程序员可能厌倦了年复一年的编程工作,对工作产生了抵触情绪,希望能摆脱这种步步紧逼的工作状态。走向管理者其实要求程序员要比一般人做更多的准备,要做更多的转型工作,并不是想当管理者 就能成为管理者的。但是,如果程序员有这个志向和爱好,有积累了这方面的工作经验,自己也感觉在这个方面能够发展,更重要的是有这样的机会,走向管理者也 是可能的。由于软件公司的管理者毕竟不同于一般公司的管理者,专业能力越强,管理起来就越得心应手的,没有专业能力的管理,遇到的问题很多,也很难解决。 因此,我的建议程序员最好要把编程、项目设计、项目管理等基础打打好。这样转型到管理者成功率就会高一些。
--------------------- 本文来自 bucai1126 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/bucai1126/article/details/79517780?utm_source=copy

作者:ThoughtWorks中国
链接:https://www.zhihu.com/question/48406009/answer/155374291
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
成长,从单一领域技术员到全领域多面手
“你觉得角色转换对你成长有帮助吗”?我问我的sponsee安辉。(试用期过后,每个人会有一个帮助他成长的sponsor)
“肯定有,在很多提升能力、拓宽眼界方面,不同的角色会带来不一样的体验和视角。”安辉的回答。
做QA的时候需要培养硬技能,研究自动化测试、性能测试的理论和技术;做BA的时候要和客户打交道、管理客户期望,会用到一些综合能力;做PM时需要对全局有好的认识,做风险的识别和管控,这些会给予人不同的锻炼和收获。
“真正换了角色之后,再从另一个视角看以前做的事情,会有不同的收获,也会有新的认识。所以如果有一天我继续回去做QA,应该会做的更好”。安辉总结着自己的经验,也分享自己的心得。
“我现在挺喜欢自己正在做的事情,也很喜欢这种工作状态,因为这份工作我还不能完全胜任,所以会觉得每天学到新东西,有挑战也有激励。”
角色的多样化成就了他的快速成长,反正做什么练什么,练什么就学什么,如果你面临角色转换而犹豫不决,安辉会告诉你:
机会这么多,多尝试一下。有了不同的视角之后,认识会更全面,也会有新的见解出来,这对以后的职业发展很有帮助,这些经历会让你从一个纯粹的技术人员,成长为一个比较全面的真正独当一面的专业人士。
3、发展,是带领别人一起突破一起坚持
发展别人是一件很难的事情,真的非常困难。
她叫林冰玉,是ThoughtWorks中国区QA社区的负责人,同时也在北京的一个团队上面做QA。
QA的社区活动做了好多年,越来越有影响力;冰玉也在持续写文章、做演讲,多渠道的输出自己在QA领域的经验和洞见。在身体力行做这些事情的同时,她影响了更多的人,越来越多的追随者加入进来,为向外输出经验、培养人才提供了力量来源。难能宝贵的是,在参与社区活动的同时,每个参与者都在项目工作中表现的十分出色。
一家专业服务公司要保持持续的竞争力,必须有不断成长出来的人和持续发展的人的能力。
“其实,有得必有失。比如花在社区发展的时间多了,在QA专业这条道路的时间就少了,这是必然的结果,也是需要权衡的问题。做社区活动,很多地方需要操心,绝对锻炼人的思考能力以及其它一些综合能力,这也是一种收获。”冰玉总结自己的心得经验。
有的时候,工作的转变可能来自一个外部因素,但做着做着,外因就变成了内在的动因,支持这些事情持续进行下去。因为既然做了,就要做好,是内心的那股劲让很多事情落地生根,从而凝聚了一批志同道合的人。

现在流行“跨界”这个词,跨界人才指的是具备两个专业以上的知识或经验的复合型人才。在ThoughtWorks,这已经是一种常态。
分析了这么多,我最想表达的意思是:所谓的稳定,是最大的谎言。在高速发展的行业,根本没有一个稳定的职业。解决焦虑的最终办法是重新定位自己的职业生涯,尽量不以所谓的熟练度和经验作为自己的竞争力,将自己的职业生涯押注在某项低门槛的技术上,而是根据自身的情况,持续不断提高综合竞争力,加强自己的不可替代性。
首先我会分析自己的特点,这是建立与他人的差异性和自己独特标签的关键所在,也是最值得加强的地方。我最大的特点是什么?

  1. 有野心。我不想选择一种得过且过的生活,而会选择一个产出价值更高的事情来做,影响更多的人,创造更高的价值。
  2. 会沟通。我沟通能力不错,既可以对外谈合作,又可以对内做管理。这会是我相对一般技术型程序员一个很大的不同。
  3. 专业强。在专业技能层面我有较深的认识与理解,虽然谈不上顶尖,但我知道怎么运用自己的知识能力找到最适合现状的方法解决几乎所有日常问题。技术积累永远是我最核心的竞争力。
    知道自己特点之后,我会以此为基础来增强自己的不可替代性。不可替代性不仅仅只是基于个人的能力,还有这几点是需要日常注意积累的:
  4. 健康的身体。在经历过一次生病后,我更加意识到拥有一个健康的身体才是最重要的。积极健身可是我们青橙员工的必备素质。
  5. 思想与格局的高度。思想的高度并不是一朝一夕就能拔高的,而是在经历了来自工作与生活的各种挑战之后,静下心来反思总结,从而慢慢积累并提升。
  6. 人脉与影响力。乐于记录和分享自己的工作感悟。抓住向其他人学习的机会,比如参加一些会议或交流,不管是同行业还是其他行业的,都是很有必要的。人脉和影响力的积累与格局的高度也是相辅相成的,与某些方面比自己优秀的人交流往往会收获满满。
    当我有了明确的方向并且每天都能看到自己进步的时候,就会对未来充满憧憬。我给自己未来的定位是做一名解决者。何谓解决者?面对未知或已知的问题,知道如何分析本质原因,制定并实施解决方案。附加打油诗一首:
    文能设计定需求,武可写码做架构。
    进做招商引融资,退做大V占风口。
    产品体验包上线,还要招人带节奏。
    IT咨询是有很多细分领域,就本人比较熟悉的ERP领域为例,来回答一下最好有哪些方面的积累。
    1.技术积累(对于在实施咨询过程中所使用IT工具的技术积累,如对SAP或Oracle系统本身的了解与掌握)
    2.业务积累(对于目标客户的目标业务领域的业务流程积累。就像医生给病人看病,首先要对各种病理病例有一个积累,才能够快速进行诊断和治疗)
    3.外语能力积累(能用得起比较大型ERP的公司,或多或少都会有Rollout或Rollin的案子,多锻炼锻炼外语能力没有坏处)
    4.顾问技能积累(这个比较抽象了,比如逻辑思维能力,信息收集能力,信息处理能力等)
    5.项目管理能力(不想当Manager的顾问不是好民工。。。)

作者:ZhaoRan
链接:https://www.zhihu.com/question/27399698/answer/37085178
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
作者:陈先生
链接:https://www.zhihu.com/question/27399698/answer/40603280
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
再说广度和深度:
咨询顾问对于广度和深度必须两手抓,两手都要硬。市场上好的咨询顾问价格要高于单纯的开发就是这个道理。知识的广度有利于你面对客户,客户往往专注于自身业务,他们的期望是找到可以理解自身,并能给出最佳方案的专家。那么如果这个专家全凭一张嘴忽悠客户走了弯路,显然咨询的价值就低了。如果顾问见多识广,又了解各行各业的最新进展及技术,能够有效帮助客户规避风险,在成本可控的情况下在先进性和成熟度中拿捏准确,提出一套合适的方案,那么客户满意度自然大增。而专家的深度决定了是否能将方案落地,有些人认为IT技术太多学不过来,很难项项精通。其实这种想法本身是错误的,IT技术是不断发展的,新的技术都是建立在旧的基础之上。同宗同源,好比说懂了一门语言,再去研究其他的语言就会快了很多。掌握一门数据库原理,理解其他的数据库也不会太难。长期钻研技术的专家自然有一套学习的方法论,可以让他们快速的掌握某一门新技术。并非能解决很多疑难杂症。但至少可快速的理解一门技术的优缺点及逻辑。这样在指导别人干活的时候才不会跑偏,才不容易被别人忽悠。
干咨询这行其实得道的大师不多。大部分很难有好的项目经验。成为大师经验和实力都是必须的。这样上能忽悠客户,下能镇住小弟。甲方手握钱袋子,你忽悠的了一时,很难忽悠的了一世。因此修炼还是必须的。

作者:陈先生
链接:https://www.zhihu.com/question/27399698/answer/40603280
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
再说广度和深度:
咨询顾问对于广度和深度必须两手抓,两手都要硬。市场上好的咨询顾问价格要高于单纯的开发就是这个道理。知识的广度有利于你面对客户,客户往往专注于自身业务,他们的期望是找到可以理解自身,并能给出最佳方案的专家。那么如果这个专家全凭一张嘴忽悠客户走了弯路,显然咨询的价值就低了。如果顾问见多识广,又了解各行各业的最新进展及技术,能够有效帮助客户规避风险,在成本可控的情况下在先进性和成熟度中拿捏准确,提出一套合适的方案,那么客户满意度自然大增。而专家的深度决定了是否能将方案落地,有些人认为IT技术太多学不过来,很难项项精通。其实这种想法本身是错误的,IT技术是不断发展的,新的技术都是建立在旧的基础之上。同宗同源,好比说懂了一门语言,再去研究其他的语言就会快了很多。掌握一门数据库原理,理解其他的数据库也不会太难。长期钻研技术的专家自然有一套学习的方法论,可以让他们快速的掌握某一门新技术。并非能解决很多疑难杂症。但至少可快速的理解一门技术的优缺点及逻辑。这样在指导别人干活的时候才不会跑偏,才不容易被别人忽悠。
干咨询这行其实得道的大师不多。大部分很难有好的项目经验。成为大师经验和实力都是必须的。这样上能忽悠客户,下能镇住小弟。甲方手握钱袋子,你忽悠的了一时,很难忽悠的了一世。因此修炼还是必须的。

四大審計是指普华永道(pwc)、德勤(dtt)、毕马威(kpmg)、安永(ey)吧?

普华永道咨询师带你揭开IT Consulting的神秘面纱

Mingche Su
软件工程师/大数据
已关注
87 人赞了该文章

  1. 首先,什么是Technology Consulting?
    很多人听到Technology Consulting都会费解,这到底是干什么的?
    也许我解释了半天,很多人还是会说,哦,所以你们是做审计的。或者有人认为我们是修电脑的?今天我就想在这里解释一下Technology Consulting到底是什么。首先, Consulting和Auditing(审计)的区别在于:Auditing一般是为了满足某些Regulations/Compliance的需求。所以比较像做checklist,确认每一项条款都被公司实施了。Consulting又叫Adivsory一般是从宏观的角度解决企业的问题。所以审计更像是西医,解决一些症状。Consulting更像中医,解决整个宏观holistic的问题。Technology Consulting是在任何一个Industry只要有技术的部门都会多多少少需要Consulting. 所以我们不止解决技术公司的,还有很多其他领域的IT部门的问题, 比如零售业,能源行业,医疗行业,娱乐业以及金融行业等等。

自2010年起,四大会计公司都纷纷转移策略开始越来越多的从事战略咨询。咨询所产生的利润也不断地赶超原本审计所产生的利润。

  1. 为什么会需要Consulting?
    有人可能会问,很多大公司都可以自己请人,为什么要雇佣Consultants?

原因有以下几点:
1)专业意见:很多问题可能不是从是重复发生的,对于大公司来说,请来一堆Full-time的人来专门做某些少频率发生的事儿,是非常浪费的。比如:写Policy,制定Strategy,这一类不需要每年都做的东西。或者是公司想要尝试拓展、实验某项新项目,但是又不愿意投入太多的全职人力,他们可能会请咨询师。因为Consulting可以在各种不同的Industry或者Companies不断地重复做这些事情,所以Consulting的人能来带更专业的意见。

2)行业知识:了解整个行业的发展水平,了解自己在这个行业的位置,或者了解自己的竞争者所在的位置。Consulting最宝贵的资源之一就是对于整个industry的理解和把握。常常听到客户会说,告诉我们我们现在在整个行业是什么位置,帮我们提升一点,只要比我们的竞争对手好一点就可以了。

3)独立性:有些宏观问题也许公司内部有专业人士可以解决。但是毕竟,一个人通常都有他所代表的部门立场,所以容易出现利益冲突。很难达到独立性。这时候就可以请Consulting的人来,独立公允的进行评估,并且提出有效地解决方案。

3.为什么会选择做Consulting?

我在卡内基梅隆大学暑期的Internship是在Autodesk.当时我的老板上司都是以前做Consulting的。我非常喜爱他们做的东西,也很喜欢他们那种有效率的Communication Style。再加上我对技术的热忱不如我对为客户服务的热忱强烈。比较喜欢解决宏观的问题,也就是所谓的Seeing the bigger picture. 最重要的是Consulting可以接触到不同的项目,不同的客户。很多原来做Consultants后来转到Industry的人都表示,最怀念Consulting的一点就是可以接触不同的项目。如果一个项目sucks, 你还是可以做完了换到另一个好项目上的。起码不用stuck with it. 还有一点我比较看重的就是,Consulting未来的职业发展方向。一般Consulting做个2-3年的,出来都可以担当一些比较managerial的角色。我甚至有CMU的学长,一年就可以跳槽去Amazon做Program Manager. 当然他本人也有别的工作经验。Consulting做到Manager以上的到了Industry也可以差不多做个Manager/Director。如果在Consulting做到Partner那么在industry一般可以做到C-suite. 当然我们也有技术track, 你也可以在这边做偏技术的。但是Consulting的技术track最大的优势除了行业知识以外,还有快速解决问题的能力。由于Consulting一般的合同比较短,所以要求很强的快速解决问题的能力。

  1. Technology consulting平时工作是怎样的?
    咨询工作一定是team work,而且每次的team几乎都是不一样的,Project Manager也会不一样。除非你的项目被延长。所以你总可以跟不同的人学到不同的东西。一个组里面一般有一个Associate (负责groundwork), 一个Senior Associate (可以独立完成很多任务,可以Lead a meeting), 一个Manager(一般是Decision-making,以及做Quality Assurance审查工作,提意见), 一个Director (负责做一些比较战略的决定),和一个Partner (负责和C-Suite 客户保持关系,以及做一些战略决策,还有签订新的合约). 一般Consulting的工作有Strategy level的也有Technology Implementation. 一般都是以评估的形式,分析一个公司当下的状况,和同行业的公司比在什么位置,以及提出建议帮助他们做的更好。

举个例子:我们最近做的项目就是要先评估一下这个客户公司整个Security的情况,跟我们公司内部的Framework。 我们要去interview各种stakeholders, 然后还要review一些已有的文件,发现客户的问题。当然很多问题都是表层问题。然后我们进行root cause analysis,总结出这些问题的根源是哪些。然后提出相关的建议(也就是需要实行哪些initiatives来解决问题)。最终还会做一个roadmap, 告诉客户每一个initiative所要花费的时间,经费,好处。而且还要prioritize哪个项目要先实施,哪些项目属于马上实施可以立竿见影的,哪些是需要长期部署的。

还有人可能比较关心Consulting的work-life balance。一般来说Consulting的人比一定都travel,但是如果你travel的话,一般是周日飞到客户所在的城市周四晚上回家。周一到周四都是在Client site工作,周五才会去自己公司的Office工作。确实Traveling会让人感到疲惫,但是你也有很多perks。比如一日三餐可以报销,酒店和飞机都可以积累points。 很多做咨询的同事他们平时出外旅游住酒店都是不花一分钱光用点数,而且住的都是四星级以上的酒店。而且Travel的另一大好处就是你可以周末呆在客户所在城市顺便旅游观光一下,也能认识到各个不同城市的人,参加当地活动了解当地文化和美食。

  1. 什么样的人适合Technology Consulting?
    有人可能认为只有很外向,很自信,很狼性的人才能做consultant?就是我们认为那种很会吹的人。但是事实上呢,你会发现咨询公司充斥着各种性格特点的,包括管理层也是。而且很多性格内向的咨询师,也有很多很成功的。但是呢,咨询这个行业会把人pushed更加外向,更加自信 (我们把这个叫做trained extrovert), 所以这对个人的个性发展未尝不是一件好事,咨询公司绝对是一个对情商的历练。你会发现,做到约上层的人,越会跟人打交道,越会做人。有人认为做咨询的其实不需要太多技术背景。其实也不然,如果拥有一个很强的技术背景在咨询界是非常beneficial的,前提是你的interpersonal skills也不是很差。这就好比在文科班里面,数学最好的通常都是文科班状元。一样的道理,在一个相对技术要求低的工作环境下,作为一个技术比较强的人。很容易differentiate yourself, 对升职也很有帮助。而且咨询公司其实很多人都是有很强的技术背景的。

很多人好奇什么样的背景比较容易获得Consulting相关的面试。一般针对应届大学生而言,只要是名校的都具有很大的优势。至于简历方面,尽量不要把自己体现的技术背景过于强悍。尽量能着重体现自己以前和Consulting的相关经验,比如,项目,实习或者以前的工作经验。就算以前和Consulting的工作不相关,也尽量需要在简历上体现你对Consulting行业的东西有所了解。比如你了解一些业界常用的Frameworks, compliance和regulations. CMU有很多Consulting相关的课程,这些课程会提供给你做Consulting项目的机会,这些东西写在简历上也会相当加分的。

  1. Technology Consulting这个Career能给你带来什么?
    刚才多多少少都有提到。我觉得主要是四点吧 1)行业专业知识 2)快速了解学习一个企业或者一个行业的能力 3) 快速解决问题的能力 4)强大的network 这个network来源于两方面,一方面是你客户方面的人脉,一方面是你公司内部的人脉。也就是你所接触的客户很多都是世界500强的公司的高层,比如sr. manager, sr. director或者C-level的人。具体哪些公司的哪些人,由于是confidential information,我就不方便透露太多。
    你在公司内部会被鼓励去和公司内部人network. 公司内部的很多人最终转去Industry也一般会做Manager以上的职位。
    而且在咨询公司,Relationship是一个绩效评估的重要指标, 所以很多就算是不喜欢network的人也会被pushed去network。我想可能很多Industry的公司并不会把这个当成绩效指标,所以员工可能不会特别有动力的去network.
  2. CMU的学生在Technology Consulting这个职业的优势是什么?

CMU在技术咨询领域优势非常大。因为CMU作为一个全美技术数一数二的学校,咨询公司对我们是非常重视的。而且,客户也会看我们的简历。所以,如果咨询师有CMU的技术背景是非常加分的。前几天我见到Heinz的Dean, Ramayya Krishnan, 他还跟我说,在四大里面,普华永道(PwC)在CMU招聘的人比重最大。所以, CMU校友在普华永道是非常受到重视的。我们的Partner都开玩笑把我们称作CMU Mafia, 卡内基梅陇黑手党。而且一旦你加入咨询行业,你会发现你有很强大CMU校友Network在背后支持你。就四大的招聘而言,普华永道(PwC), 德勤(Deloitte) 都在CMU招聘的很多的。安永(EY)也有一些。毕马威(KPMG)基本不在CMU招聘。Accenture也很多。IBM 在CMU招聘的也非常多。

  1. 毕业后先去做Consulting还是先去做Industry
    这个必须要用一个Consulting经典的,万能膏药的回答了。It depends. 先去做Consulting之后可能再转回Tech Track比较难,但是如果你在Consulting里面做的就比较偏技术就比较容易转去Tech track.但是更多的是做完Consulting直接去Industry担当Managerial role. 如果先做Industry比如Software Engineer一些的,想要再进Consulting有难度,因为你要build your case, 要有相关experience,但是也绝对是Possible的。很多做Consulting以前都有强大的技术背景(一些在微软,Google等等的)。而且先做技术再转咨询,你会有一定的Expertise,不用从低做起。
    作者:Mingche Su
    链接:https://zhuanlan.zhihu.com/p/36649155
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    大数据时代席卷而来,数据分析及数据挖掘岗位的人才需求与薪资不断升高。无论在国内还是海外,不只是互联网领域对数据分析人才需求迫切,传统企业也对数据人才求贤若渴。金融、媒体、科技、公安、教育、医疗等等行业及领域,越来越多的企业决策层把数据驱动视为企业制胜法宝。北美终身学习平台BitTiger很荣幸能邀请到数据分析专家雄驹,为大家揭秘阿里数据分析师责任和职责,帮助候选人更好准备阿里笔试及面试,愿成为有志于成为数据分析专家的入门指导。

雄驹,前阿里巴巴、蚂蚁金服数据分析专家,七年阿里生涯,历经阿里信用、风控、蚂蚁金服大安全三个部门,见证了阿里巴巴及蚂蚁金服的快速成长。雄驹拥有近13年大数据行业经验,在国企、外企、民营均从事大数据分析及挖掘相关工作。雄驹在阿里曾获得2015年阿里双11 CRO超能英雄,现已加入国内知名创业公司担任高级数据分析专家,专注于公共安全领域数据分析及服务。

通过此次分享,我们希望您能了解到阿里是如何处理每天产生庞大的数据,能知晓阿里特有的企业文化,同时掌握求职阿里数据分析职位精髓,雄驹还为职场新人分享了许多工作经验及方法。也希望您在数据分析领域里能够打下坚实的基础、系统化学习、少走弯路、不断攀登分析职业生涯新高峰。

就业切勿盲目跟风,兴趣永远是最好的老师

2005年,刚毕业不久的雄驹初入职场。计算机科班出身的他在学校及实习期学习了许多数据库原理、数据结构等知识,但真正的实战却并不多。当时国内有许多炼钢、炼铁厂都在研究如何实现自身企业统计自动化,释放人力,帮助集团大佬及各生产线主管更好地管理生产,提升企业效率。学校刚毕业的他决定尝试挑战,加入数据仓库领域。

“第一份工作真的重要,往往会影响你未来职业发展,如果你很幸运加入到一个朝阳行业,那么要恭喜你,你会比同龄人少走弯路。”雄驹回忆道,”毕业后第一份工作就接触到主流数据库及大型企业统计系统,我参与了国内宝钢、四川攀钢、宁波宝新不锈钢厂统计系统的研发,以及南京梅钢EDW(Enterprise Data Warehouse)的设计及研发。在这份工作多个实战项目基础上,雄驹发现自己对于数据分析充满了热情与兴趣”。

后来,雄驹加入HP中国软件开发中心服务。由于HP中国服务全球客户多个行业,我所在团队又主要承担HP内部销售与市场领域(Sales&Marketing portfolio),HP外部客户如宝洁(P&G accout)数据仓库、数据集市设计及研发,我全程参与了多个数据集市的设计及开发落地。

在HP工作多年,雄驹工作重心始终是企业数据仓库(EDW)及商务智能(Business intelligence)。对内,我投身于惠普全球知名的HP IT Global EDW项目中。对外,特别是宝洁客户的数据集市(P&G acount),我致力于搭建及优化宝洁全球财务分析系统,这是一个绝好的商务智能项目,无论是业务视角还是技术本身。在HP的工作始终围绕企业数据仓库及商务智能,这也为我未来的工作打下了雄厚的基础。
到了工作的第五年,雄驹不断思考自己未来的职业发展方向。“就业只有最合适你的,永远不能照搬”。当身边多数人选择走技术管理路线时,雄驹却发现自己对技术工作颇有兴趣,他喜欢看到数据经过有效加工,实现数据变现。于是他决定尝试新的挑战。2010年底,猎头顾问将他推到了阿里巴巴,当时的他成功拿到阿里巴巴中文站诚信发展部的offer,从商务智能技术开发走向电子商务数据分析师的职业转变也由此开启。回想起应聘成功的原因,雄驹说“我非常注重数据分析,尤其注重从商业角度看到数据分析价值,喜欢站在企业管理层视角看数据、品味数据”。

2010年底,雄驹如愿加入阿里。我先后服务于阿里巴巴中文站、阿里巴巴国际站、速卖通等电商平台,将整个阿里巴巴内贸及外销网站摸了一遍。入职阿里的头半年,我的工作重点是数据基础体系建设,目标是建立清晰的业务标签、数据标签,实现合理的数据分层。同时,我还和其他同学一起实现了整个部门日报、周报与月报的自动化发送,有效释放运营及BI人力,而BI人员得以专注于专题分析及数据挖掘等高附加值工作。 而后,我在“阿里神盾局”从事数据驱动和数据挖掘建模、数据化运营等工作,在阿里安全的日子里,我不断挖掘自己的工作潜能,并在2015年的双11获得了 CRO超能英雄。

为了实现更大的价值,雄驹在阿里内部实现了一次转岗,从集团安全部转到了蚂蚁金服国际风险管理部,我负责国际风控业务的数据基础体系建设、决策支持与数据化运营等工作。

在阿里巴巴诚信发展部工作期间,雄驹回忆道,阿里巴巴中文站内部多个BI团队做过整合,将数据分析师整合到了一个大团队,雄驹成为了当中的一员,新的挑战和机遇来了!数据分析大团队开第一个会议时,整个阿里巴巴中文站的总经理给BI们提出了一点希望,“我最希望你们能给我提供什么样的东西?”有人说提供报表(”表哥表妹”),提供分析报告,挖掘模型。最后,总经理回答,“告诉我哪些东西是我最要的,我并不知道的。”
雄驹知道,信息是不对称的,整个网站的总经理能获得的信息肯定比数据分析师多得多,但是他的确需要有人从分析师的视角告诉他得不到的信息,也就是他希望从分析师这里了解到他看不到的商业增值。所以,雄驹越来越领悟到,在阿里做商业分析师挑战之大,他不仅需要非常了解业务,还必须要站在管理层的视角从事分析及挖掘工作。

“阿里巴巴是一家大数据驱动的公司,能在阿里从事数据分析工作是无比幸福的”

上图为2017年阿里投资者大会上展示的阿里生态愿景。由图可见,阿里巴巴从当初的内贸
(http://1688.com)、外贸(http://alibaba.com)、海外版淘宝即速卖通(http://aliexpress.com)网站演化出了如今风靡全球的淘宝网和天猫网站(shop at Alibaba)。随着大数据、云计算时代席卷而来,阿里不断走出去,在计算服务的领域不断挖掘,阿里云发展非常迅猛,它已经是全球领先的云计算及人工智能科技公司,为200多个国家和地区的企业、开发者和政府机构提供服务(work at Alibaba)。阿里巴巴集团发展到现在,不仅有电商、云计算大数据,还有大文娱、UC、音乐、物流等等,每天都在孵化新的“物种”,形成了庞大的阿里巴巴商业模式。阿里巴巴很多事情都不知不觉正在发生,奇迹每天都在上演,使老百姓的生活发生了翻天覆地的变化。
阿里能不断成功,基于一个强大的母体,具有不断创新和改变世界的愿景和基因。阿里巴巴下有许多的网站,除了世人皆知的淘宝、天猫之外,还有如聚划算等拼团活动网站和农村淘宝等。为了支持核心业务的快速发展,阿里巴巴会做很多基础设施。例如,为天猫提供服务的支付宝,在几年之前就从阿里剥离出去,自从生态,如今已成为全球互联网金融第一独角兽“蚂蚁金服”。再如为企业内贸、外贸提供物流及仓储服务,如今演变成了“菜鸟网络”。其实内部孵化都具有一个逻辑:先服务阿里内部,再逐步走向外面,形成自有生态,支持整个中国甚至全球的电子商务往来。

“一切数据业务化,一切业务数据化,数据驱动一切。阿里巴巴是一家大数据驱动的公司,能在阿里从事数据分析工作是无比幸福的。”雄驹时常在分享中提到这句话。

雄驹接下来为大家介绍了数据分析团队与兄弟团队之间的协同关系。
1> 数据分析相关团队有算法及数据技术团队等。数据技术团队的主要工作内容就是做好数据仓库、数据质量管理、从技术评估出发深度参与数据架构设计。数据技术团队同学会用Hadoop、流计算等技术高效加工各种类型的数据。
2> 数据分析团队就像处于业务团队和技术团队中间的润滑剂,具有穿针引线的作用,充当着纽带的角色。数据技术团队把数据资产沉淀好,数据分析团队需要高效加工业务数据,以自动化的方式提供给各种管理层,通过业务分析和数据解读,将原始数据转化成商业洞察和策略建议。同时,数据分析团队还要确保数据收集完好、结构合理、质量良好,沉淀分析报告,建立并不断完善分析体系。雄驹也提到“在阿里做好数据分析,团队成员既懂商业,也要精通常用的挖掘算法。好的分析师既能设计数据基础体系,又能挖掘业务隐藏模式、预测发展趋势。”
3> 而算法团队通常精通统计模型,工作中能落地实际业务场景,实现业务的最大增值。例如,服务于阿里的电话销售业务。不管是直销还是电销,都存在一个弊端,销售人员之前会从数据库中随机抽取销售机会,其实这样做会员签单转化成功率并不高。于是算法团队便发挥作用,通过一系列算法,告诉销售经理你该给什么样的人打电话,续签的概率才会更高,帮助网站业务团队提供效率,从而看到更好的经济转化。
进入阿里之前,你需要了解分析师层级划分。据雄驹介绍,P5大多是潜力好的本科生或研究生,P6则是好的硕士生或博士生,一般来说很少有校园招聘能直接招收到P7的职位,当然也有但不多。由图可见,从P4到P9所要求候选人的工作能力和影响力也是逐级递增的,从P4的数据分析基础工作一直递增到P9成为国内具有知名度的资深数据分析专家。接下来,雄驹通过具体实例分析,用几个字简洁有力地概括出了P4~P7的能力要求:

P4:快速取数、准确无误
P5:独立执行,小有成就
P6:发掘项目,主动执行
P7:推进业务,辅助团队

雄驹认为,“好的分析师常常会有一套好的分析框架”,他向我们详细介绍了分析方法论——专题分析的常规流程与步骤。雄驹总结道,“你所需要做的就是自己先思考、设计分析框架,然后找数据分析团队内部沟通,再跟业务经理敲定逻辑,千万不要直接深入到细节里。”

接下来,雄驹对比了四个数据岗位:数据分析专家、算法专家、数据挖掘专家与数据研发专家。数据分析专家偏业务,帮助管理层决策。“好的数据分析专家是智囊团,是军师诸葛亮”,雄驹形容。而算法专家倾向于招聘博士,他们善用非常主流的人工智能算法,解决实际问题。数据挖掘专家是做工程的,需要很强的系统设计能力和编码能力。数据研发专家比较强调数据体系建设,数据仓库与数据管理方面。

阿里到底在找什么样的人?我该怎么做?
成为数据分析师具有硬技能与软技能两方面的要求。硬技能要求,你需要不断提升专业能力,至少精通一种数据挖掘语言,懂得使用专业商务智能工具。而另一方面,你需要有更高的视野、更深的洞察能力,这属于软技能范畴。

据雄驹介绍,阿里要求应届生有很强的三力:脑力、心力与体力。而作为分析师,最重要的就是要充满好奇心、善于提问、不要做被动的分析师。雄驹说,“好的分析师首先会忘记自己分析师的角色,然后把自己想成一个业务同学,贴近业务去发展”。

从专业角度来说,阿里巴巴倾向于学习统计学、数学、信息技术、计算机等相关专业,具有数理分析方面良好的素养以及数理统计基础。之后的面试会重点考察候选人数据敏感能力、逻辑分析能力,SQL掌握程度等方面。同时,如果你对互联网充满激情,有自己的理解,有互联网行业的实习经验,都是加分项。因此,雄驹建议应届的同学尽量找一些实习机会,从实战中锻炼自我。
那么,在阿里求职,雄驹又有什么建议呢?
• 雄驹强调简历,一定要标出重点——项目、比赛、专利、论文,体现出你的实战能力,善于落地的经验。
• 同时有机会的话联系潜在联系人(校友、师兄师姐等),请他们推荐你,或者给予你一些经验与信息
• 自信面试、注意着装
• 面试套路:介绍项目+实战分析题目+你有什么问题?
• 推荐论坛:阿里云天池大数据论坛,主要针对阿里招聘内容,不定期更新

针对校园招聘,雄驹给出了下图信息供应届生参考。面试流程通常是:内推/网申-简历筛选-电话面试-招聘部门面试、交叉面试-HR面试-发放录用意向书。笔试题目一共分为三个部分:选择题、问答题与分析题。选择与问答题很多考的是数理分析、统计方面的知识,考察统计学、编码能力、数据处理方面的知识,分析题主要关注实际场景。

总结文没看过瘾?观看完整版视频,享受分享的精彩

作者:尔喻
链接:https://zhuanlan.zhihu.com/p/37096562
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
你知道哪些行业需要数据分析师吗?你想知道数据分析师面试一般会考哪些内容吗?身为数据分析师,你有哪些发展方向?业务和技术,你又该如何选择?未来转行,你有哪些可能?在分享中,上述一系列困扰大家的问题都在视频中一一解答。来不及看视频?没关系,花五分钟阅读总结文,寻找答案吧!
主讲人介绍:
宫艳琢,现就职于滴滴出行大数据分析专家岗,8年数据分析经验,有多年电信/互联网/保险/银行/零售行业的数据分析/挖掘项目经验。对数据处理和特征提取有自己的经验和套路,并喜欢用通俗易懂的方式与别人分享。对于数据分析行业的发展历史和未来有着自己独到的理解和看法。

数据分析师——不同行业造就不同能力
数据分析讲究的是分析能力。在业内,分析人士很少直接拎数据,而是通过分析把数据整合成资源。数据分析是一个新的行业。宫艳琢告诉我们,在国内,数据分析师的发展超不过十五年,也就是说,拥有十年以上经验的数据分析师是非常罕见的。
那么,数据分析师这个职业是如何产生的呢?当数据量庞大的时候,仅仅依靠人脑已经不能及时解决问题,因此,出现了专门做数据分析的人。他们在企业中往往起一种辅助作用,为真正决定事态发展的关键职位上的关键人提供决策支持。
“企业发展的越快,储存的数据越多,对于数据分析师的要求也便逐渐递增,数据分析能力逐步增强,解决业务瓶颈,促进了企业业务的增长,形成了一个良性循环。”
数据分析师需要掌握两方面的技能。第一方面是BI,(Business
Intelligence商业智能)。在旧时代,公司里的BI做常规报表、临时数据需求等评估类业务。而新时代的数据分析师,还需要做预测。换句话说,旧时代侧重于事后的评估,新时代侧重事前的预测,这是两个时代最大的区别,也是数据分析师需要掌握的两大方面技能。举个例子,传统数据建模师需要根据模型预测会流失的客户,从而进行召回。而现如今,数据分析师也必须学会这点,这比过去的要求更全面。
互联网行业、数据服务、电信行业等都需要数据分析师。但不同行业的数据分析师具有不同的特点。举个例子,如果你从事于服务行业,你可能各方面能力是最全面的:强的沟通能力、数据分析建模能力、方案落地能力。如果你在互联网行业工作,你的大数据技能肯定强于他人。这就是你的行业造就了你。

当你成为一名数据分析师后,你的部门会是什么样呢?常规来讲,分为两种情况。第一种,一个公司专门成立数据分析部门,所有的数据相关人员都在这个部门里集中管理。第二种,由于业务与能力要求差别较大,各个数据分析师会被直接植入各个部门,直接为部门分析相关数据。
数据是你的“武器”,但绝对不是你的全部
宫艳琢说:“数据分析师可不仅仅依赖数据。数据,只是一个定语,修饰分析。所以一个数据分析师首要具备的能力就是分析能力。”一个好的数据分析师要具备非数据的分析能力,才能把数据用好。
其次就是沟通和表达能力。数据分析师往往不是为了自己而做数据,你需要与业务部门或者客户沟通。如果你没办法展现自己的数据且实现落地的话,是很难得到认可的,因此你的口碑也会受影响。
硬技能是必须的。身处大数据领域里的互联网行业,数据分析师必须掌握最基本的硬件与软件技能。随着大数据时代的到来,传统数据分析技能已经远远不够,对于新兴行业,你必须具备大数据分析技能,如hive,spark,R/Python,Hadoop与tableau等等。宫艳琢为大家详细介绍了几种必备硬技能在工作中的要求。
SQL
SQL是数据分析师每天使用最多的一种技能,也可以说是数据分析师的“敲门砖”。SQL作为基础,会的话加分不多,但是不会的话绝对减分。你只有掌握了SQL,才能逐步往上走,学习更多技能。观看下图,如果你觉得里面的知识点模块十分陌生,那你的SQL技能绝对需要狂补。如果你连基础部分都没有掌握,那么你这时候去面试,是绝对不会过的。也就是说,你至少要达到下图的进阶部分,才能算具备数据分析师必备的SQL技能。

R/ Python/ Tableau
同理,你还需要掌握别的硬技能。R/Python是数据加工、建模的有效工具,而Tableau是展现数据的好工具。当你使用tableau使数据可视化时,你的老板会认为你的能力比与你同等级的人要强。这三种工具是重点掌握的,但一名好的数据分析师,绝对不仅仅需要这三种硬技能。

机器学习算法
接下来就是机器学习算法。机器学习算法属于比较难的一部分,在就业竞争如此激烈的情况下,多学习一些总是好的,这是很明显的加分项。机器学习的流程就是从数据库里抽出数据进行批量处理,然后把数据代入机器学习的模型里计算,进行结果应用。
也许有人会问,那机器学习这么深奥复杂,我该从哪里开始学?宫艳琢总结出了几个小模块帮助大家学习(见下图)。图里列出来的各种算法都有利于掌握建模,加深对机器算法的理解。当然,在面试关于机器学习的技能时,如果你能对其中一两个算法有着自己独特的看法并且知道怎么应用的话,无疑是面试官眼中的加分项。

Hive/ Spark
在大数据爆发后,整个数据分析行业也提升到了一个新的层级。宫艳琢认为,hive数据仓库掌握的越多越好,应该学精,这个技能非常通用。Spark计算平台也是一大法宝,有利于解放生产力,它在数据处理方面发挥的作用是毋庸置疑的。Spark是面试里的加分项,如果你会的话,说明你肯定掌握了R/python/SQL等至少一个语言接口。而如果只做数据分析且讲究性价比的话,Linux系统简单命令和操作与Hadoop可以不要求那么高。

软技能
那么,软技能方面又有什么要求呢?从平时与人沟通的经验与实际案例分享中,宫艳琢总结出以下几点:
第一, 你必须学会倾听,不能理所当然的认为这个事情就必须这么执行。
第二, 学会沟通,即沟通过程中注意过滤、总结与确认,从而达到效率最优化。
第三, 换位思考。通过换位思考,你能代入了解更多的需求,从而做的更好,让业务方对你刮目相看。
接下来就到了面试环节该注意的问题。数据分析师的面试内容会根据工作经验而有所差异,侧重点不同。对于新人或者转行的小伙伴来说,SQL绝对是必不可少的要求。R/Python与机器学习算法是绝对的加分项。当然,面试官还会考察你的逻辑性与思路。对于具有三年以上经验的数据分析师,面试官会让你分析案例解读,硬技能方面考察机器学习与R/Python/spark。当然,你之前的管理经验也会被提问。对于毕业生来说,学校里的许多方面是与企业相反的。学校里的数据量往往没有企业那么大,对于企业工作来说,结果更重要,聚焦在产出。

能力决定你能做什么,爱好决定你要做什么
当你真正成为一名数据分析师时,职业道路又该如何规划呢?你能一辈子做数据分析师吗?
也许看完上面的介绍,许多小伙伴都想尝试一下这个全新的职业。然而,转行业是慎重的事情,无论如何是要付出代价的。宫艳琢建议,除非你已经具备了完整的数据分析套路,而且有能力、有兴趣,才能考虑转行。你要问清楚自己,你到底为什么转行?转行可以因为热爱与专业,但绝对不能只因为好奇与跟风。转行失败的人成千上万,原因也无非是找不到工作兴趣、没有成就感。因此,转行能不能成功,关键还是看个人因素。
数据分析师也常有两种工作方式,一是被动,二是主动。被动型的工作方式按需求来,你给我多少活我就做多少,能力上限被束缚。而主动型则会不停考虑,把自己的能力运用进去,把事情做得更好,做到数据驱动,上限是共同的。

“人最可贵的一点就是了解自己的能力。你要很清楚自己会什么,不会什么”宫艳琢说,“你要知道自己是想和人沟通,往前去,还是往后走,我就安安静静写代码,做个工程师”。
数据分析师也讲究可持续发展,软技能和硬技能缺一不可。提高沟通能力、发展自己项目落地的能力是软技能。务实基础、紧跟潮流是硬技能上的要求。行业内是残酷的,你会的大家可能都会,你不会的话就会被淘汰,技能不断再变,你一定要学习新事物。
良禽择木而栖,同理,数据分析师也需要选择好的雇主,一家好的公司是达到成功的重要载体。选择公司最重要的自然是公司品牌以及公司规模。很多刚成立的小公司会到大公司里挖去人才,正是因为大公司里的人能力自然会被认为更强。到更加具有影响力的公司就职,如果你想跳槽离开,将会有更多的选择机会,面临的质疑自然也会更少,新公司对你工作能力的认可也会更高。

作者:Mingche Su
链接:https://zhuanlan.zhihu.com/p/37900194
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
大数据概念的流行和数据产业的崛起,导致市场上对数据导向人才的需求剧增。大家可能觉得最为耳熟能详的是R、Python、SQL这些数据处理方向的技术栈和岗位,而忽略了对我们生活和工作影响最大的、工作内容最为酷炫、最右前景的职位:数据可视化工程师。数据可视化的发展对新闻传媒、商业决策、电子商务等诸多行业或领域都造成了巨大影响。下面我们来一一了解数据可视化的产品和对行业的影响。
数据新闻
美国大选被人们戏称为四年一度的全球娱乐活动,今年的大选过程及结果则更是让人瞠目结舌。这场大选也成了整个数据产业的狂欢,诸多主流媒体纷纷用数据可视化产业的进步,不断推动着大选的热度。下面我们来盘点一下美国主流媒体的数据新闻报道吧。
谷歌(Google) - 实时数据
这张图应该是所有关注大选的人最熟悉的了,大选夜只要用户在Google搜索2016 election就会看到选票的实时更新。简单的一张图就可以迅速让用户得知二人的选票悬殊、选票的地理分布。

华盛顿邮报(The Washington Post)
华盛顿邮报的报道“希拉里和川普的支持人口拉锯战”则是最具有代表意义的数据新闻之一。用户可以通过在最上排的按键选择想查看的人口特点(比如:性别、党派、种族等),并通过移动鼠标光标,便能查阅到某一特定人群在特定时间点上对二人的支持情况。

Source: See how Trump and Clinton’s support has changed since June along lines of race, religion
纽约时报(New York Times)
纽约时报则是在大选结束之后,针对大选结果数据进行了分析。在名为“2016年的两个美国(The Two American of 2016)”中,纽约时报通过将选票数据投射在美国地图上的方式,使得读者对大选数据有着更为具象的理解。最后通过展示了几个重要统计数据,引发读者的思考。

Source: http://www.nytimes.com/interactive/2016/11/16/us/politics/the-two-americas-of-2016.html?_r=0

以上三份数据新闻展示了现代数据新闻的特点和发展趋势:

数据产品
数据产品是一种可以被购买的数据信息产品,旨在简化数据分析和可视化的流程,使得数据分析和可视化成为不懂编程的人群也能轻松解决的工作。
麦肯锡Global Institute的数据显示,数据产业是一个年产值为3千亿美元(300 Billion)的产业。Data Broker则通过定制化的分析服务,为产业外的客户创造价值。最有名的数据产品之一就是Tableau。Tableau使得数据分析和可视化变成了人人都能会的简单的事,在各行各业中被广泛应用,简化了人们的工作和生活,帮助用户高效率的作出决策。国内较为著名的数据产品有阿里巴巴的数据魔方和友盟的Dashboard。

数据大屏
数据可视化大屏是数据展现最直观最全面的方式之一,对于企业重要数据指标的展示和实时数据的监测,是目前极佳的方案。目前国内炒的很热的“互联网+”、“企业互联网话”“大数据”的概念,引导了国内诸多企业的变革。这样的变革,引发了数据大屏研发的热潮。实时更新的数据大屏,使得平日对基层工作缺乏深刻理解的管理层,也能够及时理解基层的工作和进度。我们来看看国内最为著名的数据大屏 —— 阿里巴巴的电商数据大屏。

数据分析可视化
数据分析可视化则是处于数据分析链末端的重要环节。数据分析的重要目标,就是通过对历史数据进行分析、解析原因、预测未来发展、并利用分析对决策进行建议。研究显示,人脑对图片信息的处理速度是对文字处理速度的6倍。在信息爆炸、生活节奏过快的今天,如何利用数据可视化进行信息传播和品牌推广,更成为了各行各业研究的重要课题之一,这也是数据可视化所具有的“Story Telling”能力的优势。

1685年人类对海洋潮汐研究的可视化地图

Popularity of Facebook Usage

更多视频:阿里十年前端工程师:如何了解前端可视化:PC登录

欢迎加入互联网技术求职交流群 QQ群:792254768
编辑于 2018-06-12
赞同 5添加评论
分享
收藏举报收起
微软工程师为你推荐了十本程序员必读书目

Mingche Su
软件工程师/大数据
311 人赞了该文章

导读:本文作者Payson Wu,硕士研究方向二维PDE数值解析算法,五年前端开发经验,现就职于Microsoft。 现在的工作市场越来越讲究综合人才,软件开发行业也一样。以前的设计、开发、测试、上线分…阅读全文
赞同 31118 条评论
分享
收藏举报
回顾|雄驹:如何求职阿里数据分析师岗位

Mingche Su
软件工程师/大数据
35 人赞了该文章

大数据时代席卷而来,数据分析及数据挖掘岗位的人才需求与薪资不断升高。无论在国内还是海外,不只是互联网领域对数据分析人才需求迫切,传统企业也对数据人才求贤若渴。金融、媒体、科技、公安、教育、医疗等等行…阅读全文
赞同 3512 条评论
分享
收藏举报
【跨年礼包】北美求职白皮书:像硅谷领航者一样思考和行动

Mingche Su
软件工程师/大数据
5 人赞了该文章

2017年比较值得自豪的事情,就是带领BitTiger的童鞋们,编写了这本《北美求职白皮书》,这算是BitTiger做北美职业教育一些心得和经验的汇总吧。 这本由BitTiger出品,受到众多硅谷精英认…阅读全文
赞同 5添加评论
分享
收藏举报
SELF-DRIVING COMPUTER VISION—创造你自己的无人车

Mingche Su
软件工程师/大数据
秦伟
等 28 人赞了该文章

你能想象没有堵车的北京,畅通无阻的长安街吗?根据驭势科技CEO,前英特尔中国研究院院长研究发现,无人驾驶将是解决城市拥堵问题的重要关键。未来20年,无人驾驶汽车可帮助高速公路容纳汽车能力提高5倍,平均…阅读全文
赞同 286 条评论
分享
收藏举报
硅谷精英的盛筵?BitTiger开辟终身学习新市场

Mingche Su
软件工程师/大数据
81 人赞了该文章

前几日,来自国内门户网站网易和搜狐的记者“小伙伴”,以及一线创业媒体投资界新芽栏目的记者专程采访了BitTiger的核心团队,了解了美国终身学习市场和高科技人才培养的最新动态。昨日,三家媒体都刊登了关…阅读全文
赞同 816 条评论
分享
收藏举报
全栈数据分析师是怎么样练成的?

Mingche Su
软件工程师/大数据
51 人赞了该文章

随着科技的发展,人类社会产生的数据规模呈指数级增长。每时每刻都有大量数据被产生存储下来,尤其在电子商务、网络游戏、社交网站、旅游、在线教育等领域。现在,全世界每天产生的新数据超过400万TB。数据分析师则成为当前炙手可热的职业之一。

什么是数据分析师(Data Analyst)?
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。他们知道如何提出正确的问题,善于利用数据分析,数据可视化和数据呈现;辅助公司商业决策,帮助降低成本,提高收益,改进产品,留住客户,发现新的商业机会等。

数据分析师的就业前景
很多公司在近年来已经开始扩充或创建自己的数据分析团队。谷歌、亚马逊、Netflix、Uber和Airbnb这类科技公司,甚至还有其他非科技类的公司比如沃尔玛、Groupon,都有自己的数据组。LinkedIn(领英)去年的一次职业调查中显示,“拥有高级分析技能”的人才在各大企业的招聘中最受欢迎。
求职者也会选择在简历中加上“大数据”、“数据科学家”、“数据分析”等字眼,从而让简历更易被猎头搜索到。
可以说,数据分析是一个有着广阔前景、代表未来方向的职业。
还在等吗?赶快行动起来成为一名数据分析师吧!
在本次课程中,我们将带你走进数据分析的世界,深度剖析数据分析各大环节,手把手带你实战大型全栈数据分析项目,最后带你了解求职就业形势,为你成为一名真正的数据分析师铺平道路讲解数据分析师的求职就业。

教学团队
1.周宁奕,阿里巴巴数据可视化工程师, 数学的美学世界创始人。主攻webgl、海量数据可视化、地理相关可视化。同时也是创意编程线在线沙龙第十三期特邀嘉宾。业余时间,开发微信应用糊涂。
周老师往期讲座:【太阁×西雅图】数据可视化: 从双十一大屏到房价分析
2.习五安,VisaJavaScript全栈工程师,主攻Web数据可视化.
3.Shirley Blackrock Data Engineer,主攻ETL、数据分析.
4.兰绛,Amazon Full-stack Engineer,Python爱好者.

适用人群
对数据分析与数据可视化感兴趣,考虑从事数据分析职业的人群。建议学员具备一定的数学背景及编程能力。

您将收获什么?
• 数据分析四大核心技能
• 两个全栈数据分析项目
• 课程结业证书(完成课堂配套项目)或优秀证书(Top30%课程项目)

课程简介
本次全栈数据分析训练营包括4周课程,旨在帮助学员理解数据分析。课程通过大型实战项目,深度讲解数据分析四个环节—— 数据采集、数据存储、数据分析、数据展示。学员通过完成随堂配套项目(一个实战微项目及一个大型全栈项目),巩固所学知识、学习如何通过运用数据分析及展示处理实际问题。成功结业的学员们将从头到尾完成一个全栈数据分析项目,从理论到实战全方位掌握数据分析。
课程报名网站:BitTiger
课程工具箱+项目技术栈
• 项目技术栈:Node.js+JavaScript+MongoDB/PostgreSQL
• 数据可视化:Leaflet.js+D3.js
• 数据库查询:Navicat + Postgres
• 数据模型:线性回归、逻辑回归

课程大纲:
第零节 免费公开课(美国PST时间 10月5日 6:30PM , 北京时间10月6日 9:30 AM)
数据分析师职业介绍、案例展示、课程介绍、微项目实战
• 数据分析师的角色及工作内容
• 数据分析流程:数据爬取,数据存储,数据分析,数据可视化
• 行业案例展示:大型房价可视化项目
• 微项目实战:莆田系黑医院项目
• 实战训练营课程介绍

第一节 数据工程基础(美国PST时间 10月14日 6:30PM , 北京时间10月15日 9:30 AM)
• Javascript语言基础
• HTML&DOM
• 用Javascript操作DOM,JQuery
• 网络爬虫基础(Web Crawler)
• 实战:在浏览器console实现简易JavaScript爬虫
• 技术栈:HTML、Javascript、JQuery

第二节 数据获取(美国PST时间 10月15日 6:30PM , 北京时间10月16日 9:30 AM)
• 数据渠道分析
• 如何搭建网页
• 如何采集数据
• 如何设计爬虫
• 如何反反爬虫
• 爬虫性能优化
• 实战:爬取房价数据、黑医院项目
• 技术栈:HTML、CSS、JavaScript、MongoDB、mongoose

第三节:数据存储(美国PST时间 10月22日 6:30PM , 北京时间10月23日 9:30 AM)
• 关系型数据库(SQL)与非关系型数据库(NoSQL)的对比
• 如何选择数据库
• 如何设计数据库
• 如何使用SQL进行表查询
• SQL复杂查询
• 如何优化查询性能
• 实战:SQL场景查询
• 技术栈:SQL、Postgres、Navicat、Valentina

第四节:数据分析 (美国PST时间 10月28日 6:30PM , 北京时间10月29日 9:30 AM)
(美国时间, 北京时间)
• 工具箱介绍:Excel、R
• 数据预处理:统计分析、数据清洗、数据填补
• 数据分析挖掘:
o 数据预测:线性回归
o 数据分类:逻辑回归
o 数据聚类:K均值
• 实战:如何进行房屋聚类、定价及预测
• 技术栈:R、R Shiny、R Markdown

第五节:数据可视化(美国PST时间 10月29日 6:30PM , 北京时间10月30日 9:30 AM)
• 什么是数据可视化
• 数据展示介绍(点图,轨迹图,热力图,3D可视化,地理可视化)
• 可视化:房价项目可视化
• 技术栈:D3.js、Leaflet.js、SVG、Canvas、WebGL

第六节:数据分析求职就业(美国PST时间 11月5日 6:30PM , 北京时间11月6日 9:30 AM)
• 数据分析师、数据科学家、数据工程师的异同
• 数据分析师职位深度剖析
• 数据分析师必备技能
• 如何写好简历
• 如何准备面试
• 数据分析面试考点
• 面试题实战精讲
• 数据分析师养成之道

上课时间:

  1. 北京时间 周六、日 上午9:30~11:30点
  2. 美东时间 周五、六 晚上9:30~11:30点
  3. 美西时间 周五、六 晚上6:30~8:30点

轨迹图可视化案例——实时国际交易分析:

热力图可视化案例——大型房价分析项目:

公开课时间
• 北京时间 10/06 周六、日 上午9:30~11:30点
• 美东时间 10/05周五、六 晚上9:30~11:30点
• 美西时间 10/05周五、六 晚上6:30~8:30点

作者:自来卷儿天然呆
链接:https://zhuanlan.zhihu.com/p/43717597
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
我认为这种思想最大的毛病就在于自我否定。我举个例子,CS 这游戏大部分人都应该玩过吧,你进一个主机开始游戏以后最多的动作是什么??不是开枪,不是到处走,不是换子弹,而是按tab查看排名!每个人都想多杀点人,多拿点分,进入警察或者土匪榜的前三甚至第一,难道你会说:反正我技术一般,还不如给别人做嫁衣,让别人杀了拿分呢?所以,我们在职场混,也好像在玩一个现实版的游戏,那么我们的目的就是拿高分,也就是向更高的目标进发,无限的接近目标,甚至超越目标,而职业生涯规划,就是你达到目标的一个个里程碑,它会每时每刻为你指明你的方向,让你明确你的目标,并一步一步走下去,所以职业生涯规划绝对不是画饼充饥。
当然,你的目标必须切合实际,但是也不能太过于保守,甚至可以是一种阶段型的规划。比如我,我进公司是程序员,程序员的地位好大家应该是再熟悉不过了,我本科读的是个三类大学,还不是软件本职专业,但是有幸能找到这样一份工作,我还是很感激老板的。既来之则安之,学习技术技能,累积经验,同时关心行业的发展前进和自身的晋升路线。当时我了解到,程序员的发展一般来说是这样,程序员软件工程师架构师系统分析师(技术路线)或者项目管理师(管理路线),最终到达技术总监,或者项目总监甚至CTO、COO或者CIO等高级职位。也有程序员后来进入测试领域,后来成为QA或者QC,最后成为质量总监等。我根据我本身的性格,兴趣,和切合自身的发展方向等多方面因素考虑,定下来自己走项目管理的路线,我给自己的职业规划是这样:程序员软件工程师项目主管项目经理项目总监CIO;而我也确实一步步正在实现了自己的规划,能够到达今天的这个位置,职业规划起了相当大的作用。它总是在不停的指引和鞭笞我向目标进发,而我自己也从来没有感到彷徨,没有困惑过,因为我有目标,有规划,有方向,这就是职业规划的力量!因此,不要因为你现在的微不足道而放弃对自己的规划,饭要一口一口吃,只要你做好切实可行适合于你的规划,并且一步一步的按着规划来做,达到目标就只是时间问题而已了!
另外有一点我想说一下,就是很多人认为“计划赶不上变化”所以这种规划性的东西就算写的再好以后也可能会“赶不上变化”。我认为吧,如果你还是在学校的学生,可以有这种想法,但是如果你已经入了职场,那么就别这样想了,除非你想做一个经常转行的人,那我就没办法了。我当年在学校被辅导员逼着写职业生涯设计(比赛)的时候,我也有过这种想法,并且觉得职业生涯设计是个很扯的事情。但是后来工作后发现这个还是非常重要的,如我上文所述,是个不可或缺的东西,至少我这么认为,也确实给我带来了很好的收获。这个毕竟是个在你职业中导航的东西,就算有些和你的现实生活有些避免不了的小差距,但是至少一份好的职业生涯规划在大体上会给你一个方向性的指导,不至于让你在某些时候感到迷茫。
第二,职业生涯规划能给你带来你想要的东西
有句老话叫做“无欲则刚”,我承认我是俗人,我没有那么坦然淡定的心态,我在某些时候甚至俗到想要鱼和熊掌兼得。但是,这错了吗??答案当然是没有。只要通过正当途径,你获得的越多,反而证明你越有本事。
有很多程序员总是有这样想法:现在我是不行,但是等过几年我有经验了,工资和职位自然就上去了。暂且不说这种想法对还是错,我先讲个真实的故事。我曾经有个手下,叫小Y好了,是应届生,被公司招进来后安排在我手下当程序员。相处一段时间后,我发现小Y这个人能力很一般,也不愿意利用空闲时间学习(因为是吃技术这碗饭,所以我觉得学习真的很重要,后面会详谈),而且干活很粗糙,写的代码往往总是要我返工修改。当年年底我给他的绩效考评比较低,因此第二年加薪的时候,他相较于他的在其他部门当程序员的朋友要低很多(当时是一批招的),所以对我对公司有很大意见,后来我找他谈,我就很直接问他凭什么要求加薪水平跟别人一样?他回答我说他工资太低,来了一年还相当于应届本科水平。我说可是你的能力比某些应届生要差很多(当时我有另一个本科应届生手下,能力非常强,起码有2年经验程序员的水平)。他就回答我说他有经验。所以看到这里,各位也也应该猜到了结局,不错,后来小Y走人了。
我讲这个故事看似和职业规划没有太大关系,实际上我觉得还是能说明一些问题的。也就是说,经验重不重要呢??毫无疑问,在任何行业,经验都是非常重要的东西,而且用钱也买不来。但是大家切记,不要认为单凭“经验”这东西就可以无敌了!比如你喜欢搞技术,你想以后当个牛X的架构师,但是你仅仅靠当程序员而不去学习相关知识,就算累积10年编码经验,也充其量只能到软件工程师的程度,到架构师的那道坎很难跨越过去。那么你想得到的,终究还是水中月,看起来很近,实际上还是很远。

有些朋友会说:我不想得到什么,我不想要什么,现在这样挺好,我也挺喜欢写代码的,职业生涯规划对我来说也就没什么用。好吧,我承认,这样的朋友境界比较高,我自愧不如。但是你要明白,你是生存在社会里面,你不是一个独立的个体,你有家庭,你将来会上有老下有小,甚至你还要担负你老婆的生活,我不知道当你的父母需要你养老,你的房车需要你还贷,你的儿女需要你缴学费,乃至于你的儿子需要娶媳妇(如果是女儿就赚了,哈哈)的时候还能不能有这种淡定的心态呢??还有,你们想想,当你30好几岁了,快40岁了,还和20出头的年轻人在一起写代码的时候,会是什么感觉??他们年轻力盛,充满激情,跟你当年一样,熬通宵,连续工作10小时,不规律吃饭,哼都不会哼一声,但是你呢?当你体力下降,记忆力下降,逻辑分析能力下降,思维开始迟钝的时候,你觉得你还拼的过他们吗??当你的公司为了维持一个仅仅有“经验”而其他各方面都不如年轻人,却还要支付高于年轻人一大笔工资的中年人的时候,你觉得公司会怎么做?我不知道各位看到这里有什么想法,反正我每每想到这种情况,我的后背会发凉,我会觉得很恐怖,真的很恐怖!所以你最好还是收起那份淡定,去努力的博取你所必须要博取的东西吧,职位,薪酬等等!想要这些,说容易也容易,做好职业生涯规划,自然总有一天能够达到目标。
当你做好了职业规划后,给自己定下一条线性的职场进化路线图,定下每个里程碑,每个小的关键点,包括为了达到这些里程碑和关键点所需要做的事情,或者需要累积的知识,那么这样在你日常工作中,你不会胡乱的去累积所谓的“经验”,而是有针对性的,有目的的去学习或者去巩固或者去锻炼你的能力,这样一来,日积月累,你就自然而然的按照职业规划的线路走下去了,反过来说,你就一步一步的实现了自己的目标,得到了自己想要的东西。比如我当年给自己顶下项目管理这条路,我在平时工作中就非常注意锻炼这方面的能力,比如跟客户沟通,比如撰写文档,比如协调团队,等等,另外,我也强制要求自己学习项目管理方面的知识,强化管理的理念和能力,并将理论用于实践,将书本上学到的项目管理知识,比如进度管理,成本管理,范围管理用于我现实的项目中,这样就形成了一种良性的循环,我学到的越来越多,工作也越做越好了。那么自然而然的我就从软件工程师到项目主管,再到现在的项目经理,我想要的,我确实得到了。
第三,职业生涯规划能够让你持续的学习
前面我在说小Y的例子的时候说到过,作为一名技术领域的人,持续学习是非常重要的,这是你在这片残酷竞争的环境下生存乃至拔尖的唯一方式。前面我说过,仅仅靠工作中的那点经验累积,对于我们的发展是肯定不够的,必须要通过充电来补充知识,才能推动我们的晋升。而很多搞软件的都面临一个问题,就是没有动力去充电,一想到看书就头大,还是写代码比较有意思。
其实大多数人都明白学习的重要性,只是真正能够做到持续学习的人实在是少之又少,你扪心自问,你每天看书(技术相关)时间有多少?大多数人少于两小时的,可能更多人会选择逛逛博客园或者CSDN之类的网站罢了。学习的重要性我在这就不老生常谈了,大家读了这么多少年的书肯定就听了多少年,难就难在坚持。我去年考了复旦的在职硕士,今年考了软考的高级专业,信息系统项目管理师,为什么?因为我觉得我的知识不够用了,需要充电,需要接受更多的知识来帮助我达到我的职业规划目标,而这些考试,都是需要阅读大量的资料,学习大量的知识才能得以通过的,真心不容易!那么我的动力来自于哪里呢?就是来自于我的职业生涯规划。
5年前我给我自己的职业生涯规划大致是这样的:程序员软件工程师项目主管项目经理项目总监CIO,越向后面每一步所花的时间和所付出的努力就越大,也就是说,我现在已经到达了项目经理的位置,如果要向前再迈一步,我必须要付出可能比前三步还要多的时间和精力,而我目前的水平还远远够不上项目总监,那么怎么办??学习!!!和修炼武功一样,只有通过学习理论以及将学到的知识应用到工作上产生经验的累积,才能让我真正的提升内功,达到下一个境界!
我目前正在备考软件架构设计师,明年上半年准备考系统分析师(都是软考的高级考试),下半年考PMP,后年上半年准备硕士论文答辩(这也是职业规划的一部分)。我想等到后年,7年+工作经验,加上我的知识累积,去拿下项目总监的位子应该是不在话下了吧,这样我就又完成了职业生涯规划的一步了。我现在每天保持至少4小时的学习时间,来补习我的基础知识以及专业知识,而我学习的动力,很大程度上就是来自于我的职业规划,我一定要向前迈出那一步,就算再辛苦,再劳累,也无法阻挡我的脚步!因此,给自己的职业规划,其实也是一个很好的鞭笞你持续学习的理由,无论什么事情,就算再困难,一旦有了动力,我相信就会坚持下去的!
说了很多,不知道我的意思大家能不能理解了,其实归纳一下,职业生涯规划是指导你,鞭笞你的工具,反过来也是你一步步需要去达成的目标,相辅相成,互相作用,最终的结果就是将你的内功修炼的炉火纯青,而你也可以凭借你强大的“武功”去获得你想要的一切!我希望所有看到这篇文章的软件从业者,特别是年轻的程序员们,都可以给自己做一份职业生涯规划,给自己定一条路线,让自己在这条路线上一步一步走下去。
来源:51Testing软件测试网

回答下:
1.纯技术路线—工程师,主程,架构师,首架;
2.项目管理—工程师,项目经理,项目总监;
3.技术管理路线—工程师,技术主管,技术总监,CTO;
4.技术驱动公司的产品路线—工程师,技术产品经理,产品总监,CEO;
5.咨询路线(It战略咨询)—工程师,咨询顾问,咨询经理,咨询总监,甲方CIO;
6.投行路线—有过并购经验的高管直接转或者从行研开始爬

作者:100offer
链接:https://zhuanlan.zhihu.com/p/45227575
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
进入金九银十以来,不论是紧张备战秋招的广大学子,还是拿了半年度奖金后蠢蠢欲动的跳槽者,都对即将投身的新岗位薪资充满了好奇和困惑。最近 100offer 就收到了不少这样的留言:「你们有大数据方向的薪资报告吗?」「什么时候推一篇数据科学的行业分析?」
对于这个问题,2017 年麦肯锡就已经在分析报告中表示,预计 2018 年数据科学家的缺口在 14 万到 19 万之间,数据分析师和经理的岗位缺口则将达到 150 万。
这组数字无疑是惊人的,不过抛开宏大的叙事角度,着眼于互联网领域近年的实际跳槽数据,或许能给有志于进入数据科学领域,或已经身处其中、正在考虑新的工作机会的你,有更贴近现实的指导意义。
今天 100offer 就送上这份最新的数据科学行业薪资报告,为还在踌躇的你指点迷津。
忍不住想看彩蛋的童鞋,可以直接翻到文末哦:100offer 与硅谷独角兽 Udacity 联合精心策划的数据科学职场重磅课程上线了,限时优惠等你来领。
说明:

1、文中数据除特别说明外,皆来自 100offer。100offer 是服务于北上广深杭及新加坡互联网人才的招聘平台,其中工作 2 年以上的技术人才占 80-90%。
2、样本范围: 2015 年 1 月至 2018年 8 月,经筛选进行匿名展示的国内数据类岗位候选人,包括数据挖掘工程师、数据分析师、数据架构师、数据科学家、算法工程师等岗位。他们收到的面试邀请(以下简称面邀)和薪资普遍高于市场平均水平。
3、样本数量: 涉及 8563 份面邀的 1784 位求职者。
4、薪资计算方式:税前月薪 X 发放月份,不包含奖金、期权等。

一、数据科学领域,到底有多缺人才?

A 企业需求
我们观察到,自 2015 年 100offer 的服务范围开辟了数据类岗位的招聘需求以来,企业发放的数据类岗位面邀占比就稳步上升。

2017 年,数据相关的岗位占比到达了近 7% 的小高峰,随后 2018 年至今有轻微回落。事实上,在整体互联网行业的技术从业者当中,数据和算法工程师的岗位占比也和以上数字相吻合。

在企业需求量稳固上升的同时,数据类岗位的薪资也水涨船高。从 100offer 历年平均面邀薪资来看,2018 年至今数据类岗位已达 43.4 万元的水平,比 3 年前增长了37%;且 2015 年至今数据类岗位的面邀薪资都明显高于技术类岗位的整体平均水平。

而放眼将来,互联网的下一步革命是建立在人工智能及大数据算法之上,尽管时下从事算法和数据挖掘工作的技术人才仍占少数,但数据科学领域在未来中短期内,仍然会处于多元发展、选择众多、需求旺盛、细分领域专家型人才紧缺的需求上升期。

从职场个人发展的角度而言,无论你是不是技术岗出身,懂数据挖掘和分析将成为数字时代的人才必修技能和职业素养。
B 人才供给
1)求职人数涨势稳定
近年来数据方向求职者不断增长。2016 年人数涨势最猛,而 2018 年至今的求职人数也已经超过了 2017 年全年。

2) 求职岗位以数据科学和算法工程师为主
在数据方向的求职者中,数据科学家、算法工程师和数据挖掘工程师是 100offer 用户最感兴趣的三大岗位。

3)「初级-中级-资深」工作资历的人才梯队开始形成
从工作年限来看,一方面工作 6 年及以上的求职者占比有所增多,另一方面,也有大量工作 3 年以下的「新生力量」作为数据领域的人才后备军。

4)学历和专业背景出彩
在 100offer 的所有互联网技术类岗位候选人中,数据科学领域求职者们的学历门背景相当突出,硕士及以上学历求职者占到了一半以上。

同时,学历专业背景也以「科班出身」居多,计算机和软件工程类专业背景的候选人占比高达 43%,人文社科、经济管理类等非理工科专业的人才在数据科学领域属于占比不到 10% 的「小众群体」。

二、从企业要求与薪资角度,解读 5 大数据科学岗位

A 数据科学领域的不同岗位职能
数据科学领域有许多不同的细分岗位,各个工种之间的具体职责和职业路径并非泾渭分明,不同行业和体量的企业中也会有不同的定义。

在 BAT 等大型集团企业中,生成的数据足够海量、业务逻辑足够复杂,才会有后文所提到的 5 种职责界限明确的细分岗位。而在数据量相对小的企业,完全有可能 2-3 个岗位就能完成从数据仓库开发到分析、到前端可视化呈现的所有工作。
以下我们就来分门别类地梳理各个数据科学领域的岗位职能。
1)数据挖掘工程师/算法工程师
狭义上,数据挖掘工程师的工作内容是负责接收产品或业务方的数据需求,对应不同平台的数据源使用不同的挖掘方法,产出经过初步加工整理的数据。为了完成数据应用的工程实现,他们需要非常熟悉代码和大数据工具的应用。
广义上,数据挖掘工程师也需要承担一部分算法设计的工作,这就不仅仅是底层的数据采集环节了,还需要参与建模和算法调优。这就牵涉到另一个岗位——算法工程师。
其实,在大部分中小型企业中,「算法工程师」和「数据挖掘工程师」两个岗位之间甚至不做区分;但在阿里、拼多多这样的大中型企业中,算法、数据分析和数据挖掘工程师是完全独立的三支团队,数据岗更偏向于前端的数据清洗、处理和可视化,而算法岗更强调在已清洗规范过的数据上,用机器学习算法对数据进行分类、拟合和建模。
比如,以下是 100offer 上算法候选人的典型简历内容:

(1)与软件工程师协作,对 X 版中的 XX 和 XXX 进行优化和改进,对公司用户的存储数据进行采集,采样和模拟,比较不同的算法在不同数据模式下进行动态存储分配的的性能。
(2)利用神经网络模型对用户数据进性建模,训练和分类,存储获得的模型参数和权重,将获得的模型转化成预测模型标记语言。
(3)利用机器学习模型和基于规则模型对 XXXX 的所有商品进行危险品检测,将模型部署用于在线实时分类以及离线批处理分类。
(4)主持人群分类与精准投放、广告效果归因分析、商品零售销量预测、基于匿名数据的跨屏用户打通、同源样本库等项目的研究与开发。

所需技能:
一个刚过及格线的数据挖掘工程师,首先基础工程能力要扎实,具体语言的要求并非绝对(Java, C++, Go 等)。对算法和数据挖掘理论知识也要有基本理解,具备学习能力、自驱力和逻辑分析能力等。

除了工程实现能力之外,数据挖掘工程师如果还需要设计算法,有实际的建模经验也是必选项。算法工程师所需的职业素养和考察项,可以拆分为这几个方面:
● 经验背景
拥有一定的学术背景是算法工程师的考察重点之一,包括相关领域经验、数理基础、英文论文阅读。这是因为算法工程师对数学和机器学习的理论功底要求较高,需了解逻辑回归、T/F 检验,能对现成的模型做调参调优。
● 编程能力
算法工程师的工程素养其实和一个普通程序员相似,要至少精通一门编程语言(Java,Python, Golang ) ,Java 优先。 熟悉常用的数据结构、算法等,掌握软件工程、敏捷开发模型,熟练掌握和应用各种设计模式;有海量访问系统的开发经验。
● 业务理解能力和创新能力
业务理解能力,是指要求算法工程师能将具体的业务场景和问题,拆分、抽象成标准化的数学模型,解决问题,并将模型应用到实际业务中去,让它产生商业价值。这就要求算法工程师对业务数据的敏感度,不能仅停留在模型训练层面,而是要了解数据的业务含义、能够准确应用数据。如果没有好的业务理解力,一个你找到的自认为很棒的变量,其实可能只是你理解有误。

至于创新能力,是对中高级算法工程师的进阶要求,也是对算法工程师未来潜力的考察。因为只有对各类模型足够熟悉、经历的业务场景训练足够丰富,才能在遇到新问题时,用创新的解决方案,定位、优化模型并端到端地解决业务问题。
2)数仓开发工程师/DBA
数仓开发工程师和数据库管理员(DBA)的职责,覆盖了数据库的全生命周期,包括前期数据库架构设计、选型,中期数据库测试,以及后期的容量管理、性能优化等。两种岗位都需要对数据库的稳定和安全性负责,只是数据仓库开发更侧重于软件开发和工程问题,DBA 侧重运维管理,类似于运维工程师。在实践中很多企业并不做区分,DBA 岗位就包含了开发和运维的所有职责。
DBA 对数学原理的门槛要求相对低一些,对于有工程基础但数学一般的开发或运维工程师来说,是转行进入数据科学领域的一条可选路径。然而,由于 DBA 搭建的是数据工作流中的底层架构,大中型企业对 DBA 的要求也越来越高,在数据量庞杂的中大型企业和重大业务活动场景下(比如淘宝的电商大促、支付类 App 的春节红包等),能保障数据库平稳运行就尤其重要。能成功经受此类技术难题考验的 DBA,在人才市场中仍然非常紧缺。
3)数据分析师
数据分析师需要查询不同的数据源、处理数据、用统计和数学技能分析并总结,制作可视化图和报告。这与传说中的「数据科学家」有一些重合之处。但数据分析师较少负责编程、统计建模和机器学习相关的工作,且数据分析师的级别和视野会比科学家更初级一些。数据科学家善于用广博的行业知识和精深的数学原理知识,主动发现并解决业务中的问题;而数据分析师更多是被动地收到一些自上而下的工作指令。
所需技能:
Python/SQL/R/Excel/SAS/Matlab等。数据分析师侧重对数理统计、数据分析能力和商业逻辑的考察,弱化工程能力,因此数据分析师的专业背景一般来源较广泛,包括数学、商科甚至其它非理工科专业。
4)数据产品经理/商业分析师

数据产品经理和商业分析师,本质上可被归为一类。二者共同点在于,都是把来自客户或业务端的问题,分拆成具体的数据挖掘需求,找工程师或技术经理来实现数据的调用,并将数据最终呈现为某一个产品功能、一套工具、一份报告或解决方案。
而两种岗位区别在于,商业分析师的工作模式是项目制/课题制的,工作内容具有一定的不确定性。数据产品经理则是把一个个课题,抽象成一类共同的流程,做成一套数据平台(比如广告 DMP 系统)、工具或者 BI 报表,后续同一类型的课题都能基于它来解决,不需要再 case by case 地从零开始分析。
另外,有些企业的商业分析师定位更偏战略层(类似于业务部门的战略分析岗,inhouse consulting),除了关注数据之外,思考维度会提升到公司业务的竞品分析、未来走向和战略制定层面。
所需技能:

数据分析能力,数据敏感度;技术/工具的应用:Excel/SQL是必备项,VBA/R/Python 是加分项;产品经理所需要的通用能力:产品设计能力,对业务逻辑/用户需求的理解和抽象能力,跨团队沟通、学习能力等。同样,商业分析师最重要的通用能力也是跨部门沟通和对业务需求的快速理解能力。
5)数据科学家

100offer正在招聘的几个数据科学家岗位,薪资、职级跨度和要求跨度非常大

数据科学家的职责边界是由具体的业务形态和数据团队规模定义的。比如在互联网金融的场景下,数据科学家的工作定位就相对清晰:迭代和优化数据模型,产出精准的用户画像,实现信贷反欺诈和资产定价的自动化流程。

抛开具体业务场景不谈,通常意义上的数据科学家,到底是做什么的?可以从某份数据科学家的 JD 一探究竟:
(来源:100offer)

从这份 JD 引申开来,Data scientist 可分为两个不同的方向。

一是对前沿算法的研究。将最新的会议、学术论文或前沿技术加以验证,甄选出能落地到公司业务场景中的算法;帮助数据团队发现问题,并选择和构造正确的指标。

在有些公司,这类数据科学家又被称为「算法专家」。他们需要精通算法模型的数学原理和统计学理论,理解黑盒是如何运作的,甚至写出全新的算法。

因此,这类数据科学家需要有相当过硬的统计学、数学或机器学习方向的学术研究能力,学历以硕博居多。

二是工程和应用方向。这类数据科学家除了扎实的算法和数学理论之外,编程技能必须是资深级别,能带领团队甚至是独立完成整个数据工作流的内容(从数据库平台搭建、数据挖掘与清洗、数据分析到用户画像和前端呈现)。
所需技能:

广义上,数据科学家可视作为前几种岗位的资深从业者。除了对工程和数学的精通之外,还要对行业有足够独到的商业洞察力和战略眼光,可带领团队为检验公司的决策做数据支撑,甚至驱动公司制定决策。
B 各岗位平均薪资与面邀数
在各类数据岗位中,数据科学家和数据挖掘工程师是年薪最高的两个群体,算法工程师紧随其后。其他几个工种间的薪资差异不大,基本都能达到 25 万以上。
此外,数据科学家和算法工程师的简历在 100offer 平台最受企业欢迎,平均每位候选人会收到近 5 份来自不同企业的面试邀请。

经统计,在各个岗位中,数据科学家、数据挖掘和算法工程师在高薪的同时,候选人的平均工作年限也最高,约 3.9 年;而数据分析师和 DBA 二者,则是更适合入门新手的非技术岗(2.9年)和技术岗(2.6年)。

三、100offer 说

以上就是《数据科学行业薪资报告》的精选内容,
在完整版报告中,我们还将为你阐述:
• 技术更迭如此之快,哪些才是数据科学行业的典型技术和关键应用场景?
• 数据科学领域的纵向和横向职业发展路径有哪些?
• 从初级、中级、资深数据工程师到数据主管,不同级别岗位间的能力模型区别是什么?
没看过瘾?点这里即可免费下载报告全文:
2018秋季数据科学行业人才流动报告 - 100offer博客cn.100offer.com


文末彩蛋时间

经过 3 个多月的教案研发和打磨,100offer 联手硅谷在线科技教育平台独角兽
@优达学城(Udacity)
制作的《数据分析职业发展课》终于正式上线了!

点我查看课程详情

作为互联网专业招聘平台,100offer 一直致力于让最好的人才遇见更好的机会。我们很高兴能与 Udacity 合作,期望帮助数据从业者和爱好者,在技术精进之余,发现自己的职场最优解。
如果你不甘心自己的薪资「被平均」,却在面试中屡战屡败;
如果你渴望在数据分析的市场红利中分一杯羹,却总是不得要领;
专治求职季疑难杂症的数据职场课,值得你一试。

这门课程适合我吗?

在听课前,希望你已经熟悉 SQL, Python 或 R,完成 3 个以上独立数据分析项目经验,具有明确求职或转行意愿。

• 数据挖掘工程师
有自己擅长的数据挖掘工具或语言,当然最好是 Python / Java / Scala 其中之一,因为未来离线训练可能会在 Spark 集群上进行。要求能对常见的分类、聚类问题迅速落地解决,考察问题要耐心全面,时刻提醒自己不能以偏概全。有 Deep Learning 相关经验更佳。
• 数据分析
主要是辅佐数据挖掘工程师展开相关工作,对统计学要求较高,能深入业务发现数据中的敏感点,要求会使用 Python / SQL。

毕业 24岁
工作三年 27岁 存50万买房子、结婚 初级软件开发
再工作三年 30岁 生孩子 转为主管
再工作三年 33岁 跳槽,去做咨询
再工作三年 36岁 转为主管
36岁~46岁
46岁~56岁

头条滴滴美团
腾讯>阿里>网易>>百度>京东
商汤、旷视、地平线、第四范式
小米、拼多多、奇虎360、爱奇艺、携程

数据挖掘做什么,这点确实不好回答你们,因为能做的事情太多了!还有一个原因是因为我入行时间太短,也没办法给出一个详尽的答案,硬着头皮谈一下我的见解吧。
数据挖掘,说白了就是利用机器学习算法来解决一些问题。应用场景,往大了说,就是聚类,分类和预测,往小了说,工业界业务主要有推荐系统,识别系统,预测系统,分类系统等(等等等等)场景下使用。
在学术界,机器学习算法中心主要在神经网络和深度学习这一块,不知道你对搞学术有没有兴趣,而且国内机器学习刚起步,比较领先的就是清华,南大,中科院,其中南大周志华大神算是国内屈指可数的大神,他写得《机器学习》,建议读一下,是一本较好的中文机器学习参考书。
在工业界,机器学习算法其实并不会用的很深,很多高大上的算法其实根本用不到,当然,你要是在百度跟着吴恩达大神混,这个不属于我们讨论范畴内。大部分公司的业务,最多用个SVM,随机森林,就够用了,当然,掌握好机器学习的算法还是特别有优势的。带我的一小哥,研究生阶段被导师逼着学各种算法,现在公司领导有什么业务需要用到机器学习算法,都会跟他讨论一下。
数据挖掘国内才刚起步,通俗一点就是大数据(其实我觉得大数据很虚),学好算法,应该能找到不错的工作。
作者:吴祺育
链接:https://www.zhihu.com/question/21666262/answer/110335962
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
有人私信我问各种问题,实在诚惶诚恐,自己也是入门不到半年的小菜鸟,基础也不扎实,所以对于一些请教,我不敢给出答案,愿大家理解。
总的来说,大家问我的问题就是让我谈谈转行会遇到哪些问题,我有哪些经验可供分享。
在这里我总结一下吧:
python学习:(一个月,基本的应该都会了,python高级特性后面慢慢补,别问我是2还是3)
零基础建议书籍:
笨法学python + python核心编程 or python基础教程
一开始就看《笨法学python》,看到第50章左右,介绍完OOP,好的,这是你应该写个小程序了,我当初就写的是《笨法学python》里的文字游戏的升级版,然后就可以写个简单的爬虫啦。写过一个简单的糗事百科爬虫,适合入门级选手:初学爬虫,爬取糗百段子(修改版,亲测)
python晋级:
lambda,迭代器,生成器,装饰器,全局锁,多线程进程,并行运算,OOP,各种语法糖
完成以上所说的内容,接下来一般场景下的python应用已经难不倒你了,这个时间周期大概是三个月。自此,你已经学会用python,然而想找到一份工作这些还是不够的。
数据结构:(能看英文教材当然更好)
python的数据结构不同于其他语言,相对于其他语言来说,使用python实现数据结构比其他语言实现容易太多了,因为当初在设计python时,作者已经把实现数据结构考虑进去了。
然而,任何语言都是一门工具而已,真正影响到你的程序员生涯的,是数据结构和算法实现。
大家务必对数据结构保持高度重视!!
下面开始介绍书。
数据结构与算法:Python语言描述 北大教授写的,知识点讲解的很清楚,适合数据结构入门
Data Structures and Algorithms in Python python数据结构最佳选择!!
Python算法教程 对于刚入门的同学来讲,不推荐这本书,这本书适合有一定数据结构基础再看

数据库:(我正在学习数据库,本科上课没听过讲,现在还债)
学习Mysql是首选,会了一种数据库,其他的数据库基本都是大同小异。
机器学习:(重点,数据挖掘的核心)
这个部分我就介绍了,学习路线图知乎上有很多,也有很多机器学习的大神,推荐的肯定比我好。
以为这就完了吗?
想找到一份好的工作,这些还不够。

Spark\Hadoop学习:
上拉钩搜索数据挖掘岗位,有多少岗位不要求分布式开发经验的?
C/C++学习:
在和大神交流聊天的时候,大神告诫我说,无论你用python做什么,最后你还是需要会C/C++。虽然我现在没有体会到这点,但是回想起大神坚定的眼神,默默的在看《C++ primer》…
暂时就说这么多,还有问题可以继续留言。
也参加过不少场面试了,除了外企和一些独角兽,BAT TMDJ这些面试编程题大多来自于leetcode,难度大多在Medium,少量Hard
涉及的内容无非是基本数据结构如链表,数组,树,堆等,和常用算法二分,DP,回溯,递归,概率和数学。
如果只是为了面试的话,那么面试之前提前准备一下是完全可以的。
自己大概刷了约300道题目(主要Easy+Medium,少量Hard),至今在面试中还未出现写不出来题目的情况

也参加过不少场面试了,除了外企和一些独角兽,BAT TMDJ这些面试编程题大多来自于leetcode,难度大多在Medium,少量Hard
涉及的内容无非是基本数据结构如链表,数组,树,堆等,和常用算法二分,DP,回溯,递归,概率和数学。
如果只是为了面试的话,那么面试之前提前准备一下是完全可以的。
自己大概刷了约300道题目(主要Easy+Medium,少量Hard),至今在面试中还未出现写不出来题目的情况

我和题主的情况差不多,没有牛导、没有paper、甚至我们实验室的方向都和大火的机器学习没有太大关系,目前拿到腾讯应用研究岗的return offer 明年入职。
在这里我想分享我的一点心得:在明知自己劣势的情况下,就不要想着一蹴而就,是不是可以考虑利用这两三年的时间慢慢靠近自己的目标。例如,第一年,先学习基础知识,刷比赛,刷leetcode,找一家稍微靠谱一点的创业公司练练手;第二年,为自己确定一个较为明确的方向,cv、nlp、大数据等,然后找二线小厂的实习,边实践边提升;第三年,有了之前的积累,加上一点点运气,大概也就能够有一个比较满意的offer等着你了。

  • 1
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值