PTA 7-28 搜索树判断 (25 point(s))

该代码实现了一个程序,用于判断输入的整数序列是否为二叉搜索树或镜像二叉搜索树的前序遍历,并在正确的情况下输出对应的后序遍历序列。程序通过递归地检查输入序列是否满足二叉搜索树或其镜像的性质,并在找到匹配情况时生成并输出后序遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于二叉搜索树,我们规定任一结点的左子树仅包含严格小于该结点的键值,而其右子树包含大于或等于该结点的键值。如果我们交换每个节点的左子树和右子树,得到的树叫做镜像二叉搜索树。

现在我们给出一个整数键值序列,请编写程序判断该序列是否为某棵二叉搜索树或某镜像二叉搜索树的前序遍历序列,如果是,则输出对应二叉树的后序遍历序列。

输入格式:

输入的第一行包含一个正整数N(≤1000),第二行包含N个整数,为给出的整数键值序列,数字间以空格分隔。

输出格式:

输出的第一行首先给出判断结果,如果输入的序列是某棵二叉搜索树或某镜像二叉搜索树的前序遍历序列,则输出YES,否侧输出NO。如果判断结果是YES,下一行输出对应二叉树的后序遍历序列。数字间以空格分隔,但行尾不能有多余的空格。

输入样例1:

7
8 6 5 7 10 8 11

结尾无空行

输出样例1:

YES
5 7 6 8 11 10 8

结尾无空行

输入样例2:

7
8 6 8 5 10 9 11

输出样例2:

NO

#include <bits/stdc++.h>
using namespace std;
int key[1000];
vector<int> tree[2];

bool judge(int root, int top, bool m){
    // 左右子集下标
    int left = root + 1, right = top;
    if(m == true){
        // 镜像 先序输出(根右左)
        while(left <= top && key[left] >= key[root]) left++;
        while(right > root && key[right] < key[root]) right--;
    }
    else{
        // 非镜像(根左右)
        while(left <= top && key[left] < key[root]) left++;
        while(right > root && key[right] >= key[root]) right--;
    }
    // 类似二分查找 左右边界最后交叉
    if(left - right != 1)
        return false;
    // 继续对左右子集判断 由于下标交叉 左子集上界为top=right 同理右子集根root=left
    judge(root + 1, right, m);
    judge(left, top, m);
    // 后序输出
    tree[m].push_back(key[root]);
    return true;
}

int main() {
    int n;
    cin >> n;
    for(int i = 0; i < n; i++)
        cin >> key[i];
    for(int mirror = 1; mirror >= 0; mirror--){
        // BST判断 && 输出元素与输入元素数量相等
        if(judge(0, n-1, mirror) == true && tree[mirror].size() == n){
            cout << "YES" << endl << tree[mirror][0];
            for(int i = 1; i < n; i++)
                cout << " " << tree[mirror][i];
            exit(0);
        }
    }
    cout << "NO";
}

tree[i].size() == n

这行代码对应这组数据,不理解用来干什么的。 

        while (tmp[left] >= tmp[root] && left++ <= top) ;
        while (tmp[right] < tmp[root] && right-- > root) ; 

        while (tmp[left] >= tmp[root] && left <= top) left++;
        while (tmp[right] < tmp[root] && right > root) right--; 

不晓得这两个有什么优先级的区别,上面那个会错,下面这个对了。应该都是判断后运算吧。 

参考代码        参考理解

### PTA 7-2 二叉搜索树结构实现与问题解决方案 #### 描述 在处理PTA平台上有关二叉搜索树(BST)的问题时,理解其基本操作至关重要。这不仅涉及创建和维护一棵平衡的二叉搜索树,还包括执行诸如插入、删除以及查询等常见任务。 #### 创建二叉搜索树 为了构建一个有效的二叉搜索树,在初始化阶段应当首先定义好节的数据结构,并确保每次新增元素都能按照左子树小于父节而右子树大于等于父节的原则正确放置[^3]。 ```cpp struct TreeNode { int val; TreeNode *left, *right; TreeNode(int x) : val(x), left(NULL), right(NULL){} }; ``` 当向已存在的二叉搜索树中添加新值时,可以通过递归方式来完成: ```cpp TreeNode* insertIntoBST(TreeNode* root, int val){ if (!root) return new TreeNode(val); if (val < root->val) root->left = insertIntoBST(root->left, val); else root->right = insertIntoBST(root->right, val); return root; } ``` #### 删除特定数值对应的节 对于删除操作而言,存在三种可能的情形:目标节无任何孩子;只有一个孩子;有两个孩子。前两种情形相对容易处理——只需调整指针指向即可解决问题。然而第三种情况则较为复杂一些,通常的做法是从右侧寻找最小值作为替代品并移除之[^4]。 ```cpp TreeNode* deleteNode(TreeNode* root, int key){ if(!root) return nullptr; if(key < root->val) root->left = deleteNode(root->left, key); else if(key > root->val) root->right = deleteNode(root->right, key); else{ // Node with only one child or no child if(!root->left || !root->right){ TreeNode* temp = root->left ? root->left : root->right; if(temp == NULL){ // No children case temp = root; root = NULL; }else{ // One child case *root = *temp; } free(temp); }else { // Two children cases TreeNode* minNodeOnRightSubtree = findMin(root->right); root->val = minNodeOnRightSubtree->val; root->right = deleteNode(root->right,minNodeOnRightSubtree->val); } } return root; } // Helper function to find minimum value node in a given tree. TreeNode* findMin(TreeNode* node){ while(node && node->left != NULL) node = node->left; return node; } ``` #### 查询功能 除了上述增删改之外,另一个重要的方面就是如何高效地定位某个具体的键值位置或是判断两个指定节之间的关系,比如求解它们之间最近共同祖先等问题[^2]。 ```cpp bool searchInBST(TreeNode* root,int target){ if(!root) return false; if(target<root->val) return searchInBST(root->left,target); else if(target>root->val) return searchInBST(root->right,target); else return true; } ``` 通过以上方法论可以较好地应对大部分基础性的二叉搜索树编程挑战。当然实际应用过程中还可能会遇到更多复杂的场景需求进一步优化算法效率或增强鲁棒性等方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值