大数定律和中心极限定理(未完成)

本文详细介绍了Chebyshev不等式、特征函数和随机变量的两种收敛性——依概率收敛和依分布收敛。通过对大数定律的探讨,包括切比雪夫大数定律、辛钦大数定律和伯努利大数定律,阐述了样本均值在概率上的收敛性。中心极限定理部分,解释了为何在独立同分布的随机变量下,样本均值趋向于正态分布。总结了这两个定理在概率论和统计学中的核心思想,并提到了其在实际应用中的重要性,如蒙特卡洛方法和误差估计。
摘要由CSDN通过智能技术生成

背景:Chebyshev不等式、特征函数和两种收敛性

Chebyshev不等式

问题

当分布服从均匀分布或者正态分布时,我们知道
在这里插入图片描述
但是当我们想大概知道 P { X ≤ a } P\left\{X \leq a\right \} P{Xa}是多大或者可能多大时,就无法解决了。此时需要Chebyshev不等式

定义

r . v . r.v. r.v. X X X数学期望与方差都存在,则对任意常数 ϵ > 0 \epsilon > 0 ϵ>0,有:
P ( ∣ X − E X ∣ ≥ ϵ ) ≤ V a r ( X ) ϵ 2 P(|X - EX| \geq \epsilon) \leq \frac{Var(X)}{\epsilon^2} P(XEXϵ)ϵ2Var(X)

解释

切比雪夫告诉我们:
只要知道随机变量的期望和方差就可以大概计算出这个概率取值范围
换句话说,在随机变量 X X X的分布未知的情况下,只利用 X X X的数学期望和方差即可对 X X X的概率分布进行估值的方法。
但是注意啊!!!这一定要知道均值和方差的(一阶矩和二阶矩)!!! \textbf{但是注意啊!!!这一定要知道均值和方差的(一阶矩和二阶矩)!!!} 但是注意啊!!!这一定要知道均值和方差的(一阶矩和二阶矩)!!!

特征函数

依概率收敛

背景

我们在估计一些总体未知的 r . v . r.v. r.v.的数字特征时(就是做参数统计的时候),如果我们能构造(注意啊,是构造)出一个可以收敛于这个真实数字特征的估计量时,那么就代表我们的估计是和总体一致的( i . e . i.e. i.e.一致性)。

定义

设{ X n {X_n} Xn} 为一随机变量序列, X X X 为一随机变量,如果对于人的 ϵ > 0 \epsilon > 0 ϵ>0,有:
P ( ∣ X n − X ∣ ≥ ϵ ) → 0 ( n → 0 ) P( |X_n - X| \geq \epsilon) \rightarrow 0 ( n \rightarrow 0) P(XnXϵ)0(n0)
则称序列{ X n X_n Xn} 依概率收敛X \textbf{依概率收敛X} 依概率收敛X,记作为 X n → P X X_n\stackrel{P}\rightarrow X XnPX

含义解释

这个其实是概率派的思想(还有一个派叫贝叶斯派)。概率派相信数字特征参数)是唯一存在的,所以只要找到合适的随机序列这个随机序列可以随着 n n n的增大不断趋近真实的数字特征,用数学描述这种性质就叫做依概率收敛。说白了就是一种参数统计的方法。(后面在数理统计里基本上都是参数统计方法)

依分布收敛、弱收敛

大数定律

大数定律其实就是证明了:在不同条件下,样本均值 X ˉ = 1 n ∑ n = 1 1 X i \bar{X} = \frac{1}{n}\sum^{1}_{n = 1}X_i Xˉ=n1n=11Xi 依概率收敛于总体期望,可以看作是通过样本对总体的一个估计。

切比雪夫大数定律:

前提:两两不相关,方差期望均存在
公式: lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε } = 1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)\right|<\varepsilon\right\}=1 limnP{n1i=1nXin1i=1nE(Xi)<ε}=1

辛钦大数定律

前提: i . i . d i.i.d i.i.d 且期望(一阶钜)存在

公式: lim ⁡ n → ∞ P { ∣ X n n − p ∣ < ε } = 1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{X_{n}}{n}-p\right|<\varepsilon\right\}=1 limnP{nXnp<ε}=1

伯努利大数定律

辛钦大数定律在二项分布 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)上应用 (所有和Bernoulli沾边的就是抛硬币的三大分布)

公式: lim ⁡ n → ∞ P { ∣ X n n − p ∣ < ε } = 1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{X_{n}}{n}-p\right|<\varepsilon\right\}=1 limnP{nXnp<ε}=1

中心极限定理

一个整体的感受

一直觉得大数定理和中心极限定理很神秘,很模糊。这次下决心来搞一个彻底清楚,研究一下。

先介绍一下大数定理。网上查了一下由下面几个版本。

切比雪夫大数定律:用统计方法来估计期望的理论依据。

直观含义很简单,就是,求平均。举个例子来说,加入班上由 80个同学,那么随机选一个同学,他的身高应该是班里面的平均值。

贝努利大数定律:事件 发生的频率 依概率收敛于事件 的概率 。明确了频率的稳定性,当 很大时,事件发生的频率与概率有较大偏差的可能性很小。

这个版本定义是从概率的角度,当N很大的时候,事件A发生的概率等于A发生的频率。

中心极限定理

自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.
在独立同分布的情况下,无论 的分布函数为何,它们的平均数 当 充分大的时候总是近似地服从正态分布。

所以这样就很好理解为什么身高/智商/考试成绩符合正态分布了. 因为这些属性都取决于非常非常多的变量, 相当于一个有着n多股票的投资组合.这样他们总体组成的表现就会像他们的平均分布正态分布。

所以两个定理的核心思想都是平均。不管单个的样本(大数定理),还是分布(中心极限定理)。如果N足够大都会趋向于平均。

整体思维导图

再多废话几个应用

最近要复习来不及写了,就先贴几个链接
蒙特卡洛方法的理解、推导和应用
正态分布随机数生成
数值计算中的误差估计:
(我查了下网上没找到相关的文章,但是中心极限定理可以用来估计总误差的上限和置信水平,等考完试再写呜呜呜)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值