指导教师:孟宁
一、项目介绍
在2016年秋季的网络程序设计课程中,在孟老师的带领下进行了一个关于血常规检验报告的OCR识别。主要运用机器学习,特别是深度学习的技术对这个项目进行了分析和开发。主要内容是对血常规检验报告的图片进行识别,根据深度神经网络检测或者预测出检查者的年龄、性别及血常规检验的各项数据以及年龄和性别等,最后将预测结果显示到网页上。
二、环境安装和运行
我们的开发环境主要是在Linux系统上,下面是安装环境的一些命令:
# 安装numpy,
sudo apt-get install python-numpy # http://www.numpy.org/
# 安装opencv
sudo apt-get install python-opencv # http://opencv.org/
##安装OCR和预处理相关依赖
sudo apt-get install tesseract-ocr
sudo pip install pytesseract
sudo apt-get install python-tk
sudo pip install pillow
# 安装Fla

本文是网络程序设计课程的总结,重点介绍了利用深度学习进行血常规检验报告的OCR识别项目。通过机器学习技术,对血常规报告图片进行处理,预测年龄、性别和各项指标,并展示在网页上。开发环境基于Linux,使用了numpy、opencv、tesseract、Flask和mongodb等工具。此外,文章还探讨了神经网络和深度学习在图像分类、语音识别等领域的应用,并分享了作者的学习心得。
最低0.47元/天 解锁文章
1954

被折叠的 条评论
为什么被折叠?



