网络程序设计课程总结

本文是网络程序设计课程的总结,重点介绍了利用深度学习进行血常规检验报告的OCR识别项目。通过机器学习技术,对血常规报告图片进行处理,预测年龄、性别和各项指标,并展示在网页上。开发环境基于Linux,使用了numpy、opencv、tesseract、Flask和mongodb等工具。此外,文章还探讨了神经网络和深度学习在图像分类、语音识别等领域的应用,并分享了作者的学习心得。
摘要由CSDN通过智能技术生成

指导教师:孟宁


一、项目介绍

  在2016年秋季的网络程序设计课程中,在孟老师的带领下进行了一个关于血常规检验报告的OCR识别。主要运用机器学习,特别是深度学习的技术对这个项目进行了分析和开发。主要内容是对血常规检验报告的图片进行识别,根据深度神经网络检测或者预测出检查者的年龄、性别及血常规检验的各项数据以及年龄和性别等,最后将预测结果显示到网页上。

  

二、环境安装和运行

  我们的开发环境主要是在Linux系统上,下面是安装环境的一些命令:

# 安装numpy,
sudo apt-get install python-numpy # http://www.numpy.org/
# 安装opencv
sudo apt-get install python-opencv # http://opencv.org/


##安装OCR和预处理相关依赖
sudo apt-get install tesseract-ocr
sudo pip install pytesseract
sudo apt-get install python-tk
sudo pip install pillow


# 安装Fla

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值