
汇聚每周必看AI观点、研究和各类资源,不错过一条重要资讯!欢迎扫码订阅,获取邮件推送。
观点
“我们会在未来的五年内破解这些(人脑的)程序......现有的一切人工智能,都是建立在与大脑高层次上所做的事情完全不同的基础上......假设有数十亿的参数,这些神经元间的权重在大量训练实例的基础上去调整,会发生奇妙的事情。大脑是如此,深度学习也是如此。但问题在于,如何获得调整参数的梯度......目前我的信念是,反向传播......与大脑的机制完全不同,大脑以(与反向传播)不同的方式获取梯度。”
——6月8日,深度学习三巨头之一的Geoffrey Hinton做客Robot Brain播客节目,对大脑机制进行阐述时如是说。
“现在,我们被困在‘局部最小值’中,公司追求提升模型的基准测试水平,而不是提出基础性的想法。他们采用已有的技术,勉强进行着小幅的改进,而不是停下来,追求解决更为根本的问题。我们需要更多的研究者,去问出更为基本的问题:如何构建能够同时学习和推理的系统,而不是追求华丽闪光灯下的媒体演
最低0.47元/天 解锁文章
9

被折叠的 条评论
为什么被折叠?



