用 Python 分析某医院药品销售案例

文/木木  图片来源于网络

数据分析的基本过程一般分为以下几个部分:提出问题、理解数据、数据清洗、构建模型、数据可视化

本项目带你根据以上过程详细分析朝阳医院药品销售数据!

1.提出问题

在数据分析之前,我们先要明确分析目标是什么,这样可以避免我们像无头苍蝇一样拿着数据无从下手,也可以帮助我们更高效的选取数据,进行分析研究。

本次的分析目标是从销售数据中分析出以下业务指标:

1)月均消费次数

2)月均消费金额

3)客单价

4)消费趋势

有了分析目标,我们再来关注一下数据情况。

2.理解数据

1)导入数据包,提取数据文件

In [1]:

#导入numpy、pandas包import numpy as npimport pandas as pd#导入数据salesDf = pd.read_excel('/home/kesci/input/medical9242/朝阳医院2018年销售数据.xlsx')

2)查看导入数据的基本状况

In [2]:

#查看导入数据的类型type(salesDf)

Out[2]:

pandas.core.frame.DataFrame

In [3]:

salesDf.dtypes

Out[3]:

购药时间     object
社保卡号    float64
商品编码    float64
商品名称     object
销售数量    float64
应收金额    float64
实收金额    float64
dtype: object

In [4]:

salesDf.shape

Out[4]:

(6578, 7)

In [5]:

#查看列名salesDf.columns

Out[5]:

Index(['购药时间', '社保卡号', '商品编码', '商品名称', '销售数量', '应收金额', '实收金额'], dtype='object')

In [6]:

#查看每列数据的统计数目salesDf.count()

Out[6]:

购药时间    6576
社保卡号    6576
商品编码    6577
商品名称    6577
销售数量    6577
应收金额    6577
实收金额    6577
dtype: int64

In [7]:

#查看前五列salesDf.head()

Out[7]:


购药时间社保卡号商品编码商品名称销售数量应收金额实收金额
02018-01-01 星期五1.616528e+06236701.0强力VC银翘片6.082.869.00
12018-01-02 星期六1.616528e+06236701.0清热解毒口服液1.028.024.64
22018-01-06 星期三1.260283e+07236701.0感康2.016.815.00
32018-01-11 星期一1.007034e+10236701.0三九感冒灵1.028.028.00
42018-01-15 星期五1.015543e+08236701.0三九感冒灵8.0224.0208.00

3.数据清洗

取得了数据,并不能马上就开始进行数据分析。我们得到的数据通常并不是完全符合我们分析要求的,而且可能存在缺失值、异常值,这些数据都会使我们的分析结果产生偏差。所以在分析之前,需要进行子集选择、缺失数据补充、异常值处理、数据类型转换等多个步骤。这些都属于数据清理的范畴。在数据分析中,通常有多达60%的时间是花在数据清洗中的。通常的清洗步骤有以下几步:• 选择子集

• 列名重命名

• 缺失数据处理

• 数据类型转换

• 数据排序

• 异常值处理

这些步骤有些不是一步就能完成的,可能需要重复操作。

现在开始对药店销售数据进行数据清洗。

1)选择子集

药店销售数据中,项目较少,选择子集可以忽略,我们从列名重命名开始。

2)列名重命名

销售数据集,购药时间显示为销售时间更为合理,我们先把这个项目名称做一下变更。

In [8]:

#购药时间->销售时间nameChangeDict = {'购药时间':'销售时间'}#参数inplace=True表示覆盖元数据集salesDf.rename(columns = nameChangeDict,inplace=True)

3)缺失数据处理

对于缺失数据,我们可以有几种处理方法:

▪ 删除

当缺失数据占总数据量的比例很小的时候,我们通常采用删除的处理方法。

▪ 合理值填充

在某些不适合删除的场合,我们有时候也会对缺失数据进行合理值填充,如平均值,中位数,相邻数据等等。

In [9]:

#首先查看一下哪些项目存在缺失值salesDf.isnull().any()

Out[9]:

销售时间    True
社保卡号    True
商品编码    True
商品名称    True
销售数量    True
应收金额    True
实收金额    True
dtype: bool

好吧,每个项目都存在缺失值。在这个销售数据中,销售时间和社保卡号是必须项目,不可或缺。所以我们在这里只把销售时间和社保卡号有缺失的数据做删除处理。我们来查看一下销售时间和社保卡缺失的数据大小,然后做删除处理。

In [10]:

#查看一下缺失值的数量#通常可以用isnull函数来查找缺失值salesDf[salesDf[['销售时间','社保卡号']].isnull().values == True]

Out[10]:


销售时间社保卡号商品编码商品名称销售数量应收金额实收金额
6570NaN11778628.02367011.0高特灵10.056.056.00
65712018-04-25 星期二NaN2367011.0高特灵2.011.29.86
6574NaNNaNNaNNaNNaNNaNNaN
6574NaNNaNNaNNaNNaNNaNNaN

In [11]:

#序号6574因为销售时间和社保卡号都缺失,所以会出现两次。所以我们要去掉一下重复数据。naDf = salesDf[salesDf[['销售时间','社保卡号']].isnull().values == True].drop_duplicates()naDf

Out[11]:


销售时间社保卡号商品编码商品名称销售数量应收金额实收金额
6570NaN11778628.02367011.0高特灵10.056.056.00
65712018-04-25 星期二NaN2367011.0高特灵2.011.29.86
6574NaNNaNNaNNaNNaNNaNNaN

从上面可以清楚看出销售时间和社保卡号缺失的数据一共有三条,当数据量大的时候我们可以只显示条数,不显示数据内容

In [12]:

#缺失数据行数naDf.shape[0]

Out[12]:

3

现在把这些缺失数据进行删除

In [13]:

#含有销售时间和社保卡号的缺失数据删除salesDf = salesDf.dropna(subset=['销售时间','社保卡号'],how = 'any')#删除后数据集规模显示salesDf.shape

Out[13]:

(6575, 7)

在数据删除后要及时更新一下最新的序号,不然可能会产生问题。

In [14]:

#重命名行名(index):排序后的列索引值是之前的行号,需要修改成从0到N按顺序的索引值salesDf=salesDf.reset_index(drop=True)

4)数据类型转换

▪ 数量、金额项目:从字符串类型转换为数值(浮点型)类型

In [15]:

salesDf['销售数量'] = salesDf['销售数量'].astype('float')salesDf['应收金额'] = salesDf['应收金额'].astype('float')salesDf['实收金额'] = salesDf['实收金额'].astype('float')print('转换后的数据类型:\n',salesDf.dtypes)
转换后的数据类型:
 销售时间     object
社保卡号    float64
商品编码    float64
商品名称     object
销售数量    float64
应收金额    float64
实收金额    float64
dtype: object

▪ 日期项目:从字符串类型转换为日期类型 销售日期中包含了日期和星期,我们只要保留日期内容即可。这里用一个自定义的函数dateChange来实现这个功能。

In [16]:

#日期转换def dateChange(dateSer):
    dateList = []
    for i in dateSer:
        #例如2018-01-01 星期五,分割后为:2018-01-01
        str = i.split(' ')[0]
        dateList.append(str)
    dateChangeSer = pd.Series(dateList)
    return dateChangeSerdateChangeSer = dateChange(salesDf['销售时间'])dateChangeSer

Out[16]:

0       2018-01-01
1       2018-01-02
2       2018-01-06
3       2018-01-11
4       2018-01-15
5       2018-01-20
6       2018-01-31
7       2018-02-17
8       2018-02-22
9       2018-02-24
10      2018-03-05
11      2018-03-05
12      2018-03-05
13      2018-03-07
14      2018-03-09
15      2018-03-15
16      2018-03-15
17      2018-03-15
18      2018-03-20
19      2018-03-22
20      2018-03-23
21      2018-03-24
22      2018-03-24
23      2018-03-28
24      2018-03-29
25      2018-04-05
26      2018-04-07
27      2018-04-13
28      2018-04-22
29      2018-05-01
           ...
6545    2018-04-05
6546    2018-04-05
6547    2018-04-09
6548    2018-04-10
6549    2018-04-10
6550    2018-04-10
6551    2018-04-12
6552    2018-04-13
6553    2018-04-13
6554    2018-04-14
6555    2018-04-15
6556    2018-04-15
6557    2018-04-15
6558    2018-04-15
6559    2018-04-16
6560    2018-04-17
6561    2018-04-18
6562    2018-04-21
6563    2018-04-22
6564    2018-04-24
6565    2018-04-25
6566    2018-04-25
6567    2018-04-25
6568    2018-04-26
6569    2018-04-26
6570    2018-04-27
6571    2018-04-27
6572    2018-04-27
6573    2018-04-27
6574    2018-04-28
Length: 6575, dtype: object

In [17]:

salesDf['销售时间'] = dateChangeSersalesDf.head()

Out[17]:


销售时间社保卡号商品编码商品名称销售数量应收金额实收金额
02018-01-011.616528e+06236701.0强力VC银翘片6.082.869.00
12018-01-021.616528e+06236701.0清热解毒口服液1.028.024.64
22018-01-061.260283e+07236701.0感康2.016.815.00
32018-01-111.007034e+10236701.0三九感冒灵1.028.028.00
42018-01-151.015543e+08236701.0三九感冒灵8.0224.0208.00

在做完转化后再观察一下有没有产生新的缺失值

In [18]:

salesDf['销售时间'].isnull().any()

Out[18]:

False

In [19]:

salesDf.dtypes

Out[19]:

销售时间     object
社保卡号    float64
商品编码    float64
商品名称     object
销售数量    float64
应收金额    float64
实收金额    float64
dtype: object

数据没有产生新的缺失,我们继续向下,把销售时间的数据类型转为日期型。

In [20]:

dateSer=pd.to_datetime(salesDf['销售时间'], format = '%Y-%m-%d', errors='coerce')dateSer

Out[20]:

0      2018-01-01
1      2018-01-02
2      2018-01-06
3      2018-01-11
4      2018-01-15
5      2018-01-20
6      2018-01-31
7      2018-02-17
8      2018-02-22
9      2018-02-24
10     2018-03-05
11     2018-03-05
12     2018-03-05
13     2018-03-07
14     2018-03-09
15     2018-03-15
16     2018-03-15
17     2018-03-15
18     2018-03-20
19     2018-03-22
20     2018-03-23
21     2018-03-24
22     2018-03-24
23     2018-03-28
24     2018-03-29
25     2018-04-05
26     2018-04-07
27     2018-04-13
28     2018-04-22
29     2018-05-01
          ...
6545   2018-04-05
6546   2018-04-05
6547   2018-04-09
6548   2018-04-10
6549   2018-04-10
6550   2018-04-10
6551   2018-04-12
6552   2018-04-13
6553   2018-04-13
6554   2018-04-14
6555   2018-04-15
6556   2018-04-15
6557   2018-04-15
6558   2018-04-15
6559   2018-04-16
6560   2018-04-17
6561   2018-04-18
6562   2018-04-21
6563   2018-04-22
6564   2018-04-24
6565   2018-04-25
6566   2018-04-25
6567   2018-04-25
6568   2018-04-26
6569   2018-04-26
6570   2018-04-27
6571   2018-04-27
6572   2018-04-27
6573   2018-04-27
6574   2018-04-28
Name: 销售时间, Length: 6575, dtype: datetime64[ns]

In [21]:

dateSer.isnull().any()

Out[21]:

True

In [22]:

compareDf = pd.DataFrame(dateSer[dateSer.isnull()],salesDf[dateSer.isnull()]['销售时间'])compareDf

Out[22]:


销售时间
销售时间
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT
2018-02-29NaT

查看了下数据,产生空值的原因是因为数据中出现了'2018-02-29'这样实际不存在的日期。在实际应用中,最好能向业务部门询问一下产生的原因,看下是不是因为日期推算不正确导致了这样原因的产生,需不需要将这样的数据进行一下必要的修正。这里就简单的把数据进行删除。

In [23]:

salesDf['销售时间'] = dateSersalesDf.dtypes

Out[23]:

销售时间    datetime64[ns]
社保卡号           float64
商品编码           float64
商品名称            object
销售数量           float64
应收金额           float64
实收金额           float64
dtype: object

In [24]:

salesDf=salesDf.dropna(subset=['销售时间','社保卡号'],how='any')salesDf.shape

Out[24]:

(6552, 7)

In [25]:

salesDf=salesDf.reset_index(drop=True)

5)数据排序 销售记录一般是以销售时间为顺序排列的,所以我们对数据进行一下排序

In [26]:

#按销售时间排序salesDf = salesDf.sort_values(by='销售时间')#再次更新一下序号salesDf = salesDf.reset_index(drop = True)

6)异常值处理

在下面数据集的描述指标中可以看出,存在销售数量为负的数据,这明显是不合理的,我们把这部分数据也进行删除

In [27]:

salesDf.describe()

Out[27]:


社保卡号商品编码销售数量应收金额实收金额
count6.552000e+036.552000e+036552.0000006552.000006552.000000
mean6.095150e+091.015031e+062.38415850.4302546.266972
std4.888430e+095.119572e+052.37475487.6807581.043956
min1.616528e+062.367010e+05-10.000000-374.00000-374.000000
25%1.014290e+088.614560e+051.00000014.0000012.320000
50%1.001650e+108.615070e+052.00000028.0000026.500000
75%1.004898e+108.687840e+052.00000059.6000053.000000
max1.283612e+102.367012e+0650.0000002950.000002650.000000

In [28]:

#删除异常值:通过条件判断筛选出数据#查询条件querySer=salesDf.loc[:,'销售数量']>0#应用查询条件print('删除异常值前:',salesDf.shape)salesDf=salesDf.loc[querySer,:]print('删除异常值后:',salesDf.shape)
删除异常值前:(6552, 7)
删除异常值后:(6509, 7)

数据清洗完了之后,我们终于可以来搭建我们的模型啦。当然如果在模型搭建过程中再次发现数据异常情况,我们还是要对数据进行进一步的清洗。

4.构建模型

1)业务指标1:月均消费次数=总消费次数 / 月份数

总消费次数:同一天内,同一个人发生的所有消费算作一次消费。这里我们根据列名(销售时间,社区卡号)结合,如果这两个列值同时相同,只保留1条,将重复的数据删除

月份数:数据已经按照销售时间进行排序,只需将最后的数据与第一条数据相减就可换算出月份数

In [29]:

#总消费次数计算kpDf = salesDf.drop_duplicates(subset=['销售时间','社保卡号'])total = kpDf.shape[0]print('总消费次数为:',total)
总消费次数为:5345

In [30]:

#月份数计算startDay = salesDf.loc[0,'销售时间']print('开始日期:',startDay)endDay = salesDf.loc[salesDf.shape[0]-1,'销售时间']print('结束日期:',endDay)monthCount = (endDay - startDay).days//30print('月份数:',monthCount)
开始日期: 2018-01-01 00:00:00
结束日期: 2018-07-18 00:00:00
月份数: 6

In [31]:

#业务指标1:月均消费次数=总消费次数 / 月份数kpi1 = total / monthCountprint('业务指标1:月均消费次数=',kpi1)
业务指标1:月均消费次数= 890.8333333333334

2)指标2:月均消费金额 = 总消费金额 / 月份数

In [32]:

totalMoney = salesDf['实收金额'].sum()kpi2 = totalMoney / monthCountprint('业务指标2:月平均消费金额=',kpi2)
业务指标2:月平均消费金额= 50672.494999999995

3)指标3:客单价=总消费金额 / 总消费次数

In [33]:

kpi3 = kpi2 / kpi1print('业务指标3:客单价=',kpi3)
业务指标3:客单价= 56.88212722170252

4)指标4:消费趋势,画图:折线图

In [34]:

#在进行操作之前,先把数据复制到另一个数据框中,防止对之前清洗后的数据框造成影响groupDf=salesDf#第1步:重命名行名(index)为销售时间所在列的值groupDf.index=groupDf['销售时间']groupDf.head()

Out[34]:


销售时间社保卡号商品编码商品名称销售数量应收金额实收金额
销售时间






2018-01-012018-01-011.616528e+06236701.0强力VC银翘片6.082.869.0
2018-01-012018-01-011.078916e+08861456.0酒石酸美托洛尔片(倍他乐克)2.014.012.6
2018-01-012018-01-011.616528e+06861417.0雷米普利片(瑞素坦)1.028.528.5
2018-01-012018-01-011.007397e+10866634.0硝苯地平控释片(欣然)6.0111.092.5
2018-01-012018-01-011.001429e+10866851.0缬沙坦分散片(易达乐)1.026.023.0

In [35]:

#第2步:分组gb=groupDf.groupby(groupDf.index.month)#第3步:应用函数,计算每个月的消费总额mounthDf=gb.sum()mounthDf

Out[35]:


社保卡号商品编码销售数量应收金额实收金额
销售时间




16.257155e+121.073329e+092527.053561.649461.19
24.702493e+127.438598e+081858.042028.838790.38
36.124761e+121.007946e+092225.045318.041597.51
47.620230e+121.226705e+093010.054324.348812.70
55.898556e+121.004573e+092225.051263.446925.27
65.421001e+129.289637e+082328.052300.848327.70
73.608900e+126.259256e+081483.032568.030120.22

In [36]:

import matplotlib.pyplot as pltimport seaborn as snsimport matplotlib as mplmpl.rcParams['font.sans-serif'] = ['SimHei']mpl.rcParams['font.serif'] = ['SimHei']sns.set_style("darkgrid",{"font.sans-serif":['simhei', 'Arial']})import matplotlib.pyplot as plt%matplotlib inline#绘制销售数量图plt.plot(mounthDf['销售数量'],color = 'b')

Out[36]:

[<matplotlib.lines.Line2D at 0x7fa6e872e550>]
findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans.

四月份为最高点,二月份为前期一个最低点,而且在四月份以后销售一直处于向下的趋势,在记录的日期中,七月份达到了历史最低水平。

2020腾讯云产品采购季来临,

助力行业复工复产!

 长按扫描下方二维码 

高性价比产品低至1

服务器最低仅99元/

可领8888元开工大礼包

新老用户同享优惠!

↓ ↓ 长 按 扫 码 进 入 活 动  

【Python中文社区专属优惠码】

 点击阅读原文,即享腾讯云产品1折优惠起

发布了34 篇原创文章 · 获赞 376 · 访问量 73万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览