判断质数/素数

原创 2018年04月16日 16:48:58

定义:约数只有1和本身的整数称为质数,或称素数。


1)直观判断法

最直观的方法,根据定义,因为质数除了1和本身之外没有其他约数,所以判断n是否为质数,根据定义直接判断从2到n-1是否存在n的约数即可。C++代码如下:

  1. bool isPrime_1( int num )  
  2. {  
  3.     int tmp =num- 1;  
  4.     for(int i= 2;i <=tmp; i++)  
  5.       if(num %i== 0)  
  6.          return 0 ;  
  7.     return 1 ;  
  8. }  



2)直观判断法改进

上述判断方法,明显存在效率极低的问题。对于每个数n,其实并不需要从2判断到n-1,我们知道,一个数若可以进行因数分解,那么分解时得到的两个数一定是一个小于等于sqrt(n),一个大于等于sqrt(n),据此,上述代码中并不需要遍历到n-1,遍历到sqrt(n)即可,因为若sqrt(n)左侧找不到约数,那么右侧也一定找不到约数。C++代码如下:
  1. bool isPrime_2( int num )  
  2. {  
  3.      int tmp =sqrt( num);  
  4.      for(int i= 2;i <=tmp; i++)  
  5.         if(num %i== 0)  
  6.           return 0 ;  
  7.      return 1 ;  
  8. }  

ç语言代码如下:

int is_prime(int n) {
    int i, k;
    k = sqrt(n);
    if(n == 1)
        return 0;
    else {


        for (i = 2; i <= k; i++)
            if(n % i == 0)
                break;

        if(i <= k)
            return 0;
        else
            return n;
    }

}

3)另一种方法

方法(2)应该是最常见的判断算法了,时间复杂度O(sqrt(n)),速度上比方法(1)的O(n)快得多。最近在网上偶然看到另一种更高效的方法,暂且称为方法(3)吧,由于找不到原始的出处,这里就不贴出链接了,如果有原创者看到,烦请联系我,必定补上版权引用。下面讲一下这种更快速的判断方法;
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;

证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里有个题外话,关于孪生素数,有兴趣的道友可以再另行了解一下,由于与我们主题无关,暂且跳过。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数。
此时判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度,原因是,假如要判定的数为n,则n必定是6x-1或6x+1的形式,对于循环中6i-1,6i,6i+1,6i+2,6i+3,6i+4,其中如果n能被6i,6i+2,6i+4整除,则n至少得是一个偶数,但是6x-1或6x+1的形式明显是一个奇数,故不成立;另外,如果n能被6i+3整除,则n至少能被3整除,但是6x能被3整除,故6x-1或6x+1(即n)不可能被3整除,故不成立。综上,循环中只需要考虑6i-1和6i+1的情况,即循环的步长可以定为6,每次判断循环变量k和k+2的情况即可,理论上讲整体速度应该会是方法(2)的3倍。代码如下:
  1. bool isPrime_3( int num )  
  2. {  
  3.                  //两个较小数另外处理  
  4.                  if(num ==2|| num==3 )  
  5.                                  return 1 ;  
  6.                  //不在6的倍数两侧的一定不是质数  
  7.                  if(num %6!= 1&&num %6!= 5)  
  8.                                  return 0 ;  
  9.                  int tmp =sqrt( num);  
  10.                  //在6的倍数两侧的也可能不是质数  
  11.                  for(int i= 5;i <=tmp; i+=6 )  
  12.                                  if(num %i== 0||num %(i+ 2)==0 )  
  13.                                                  return 0 ;  
  14.                  //排除所有,剩余的是质数  
  15.                  return 1 ;  
  16. }  
算法性能测试:
编写测试代码,使用较多数据测试比较几种方法的判断效率,数据量40w,代码如下:
  1. #include <iostream>  
  2. #include <string>  
  3. #include <ctime>  
  4. #include <vector>  
  5. using namespace std;  
  6. bool isPrime_1( int num );  
  7. bool isPrime_2( int num );  
  8. bool isPrime_3( int num );  
  9. int main()  
  10. {  
  11.                  int test_num =400000;  
  12.                  int tstart ,tstop; //分别记录起始和结束时间  
  13.                  //测试第一个判断质数函数  
  14.                  tstart=clock ();  
  15.                  for(int i= 1;i <=test_num; i++)  
  16.                                  isPrime_1(i );  
  17.                  tstop=clock ();  
  18.                  cout<<"方法(1)时间(ms):" <<tstop- tstart<<endl ;//ms为单位  
  19.                  //测试第二个判断质数函数  
  20.                  tstart=clock ();  
  21.                  for(int i= 1;i <=test_num; i++)  
  22.                                  isPrime_2(i );  
  23.                  tstop=clock ();  
  24.                  cout<<"方法(2)时间(ms):" <<tstop- tstart<<endl ;  
  25.                  //测试第三个判断质数函数  
  26.                  tstart=clock ();  
  27.                  for(int i= 1;i <=test_num; i++)  
  28.                                  isPrime_3(i );  
  29.                  tstop=clock ();  
  30.                  cout<<"方法(3)时间(ms):" <<tstop- tstart<<endl ;  
  31.                  cout<<endl ;  
  32.                  system("pause" );  
  33.                  return 0 ;  
  34. }  

运行结果如下;


可以看出,判断到40w,效率上方法(1)明显要差得多,方法(2)和方法(3)在这种测试数量下时间相差2倍多

单独对比方法(2)和(3),数据量加到1000w,结果如下:

可以看出,方法(2)和方法(3)在这种测试数量下时间相差依然是2倍多,不过已经是很不错的提升。
对了,附上运行环境,CPU-i5-3210,内存4G,win7,vs2012。



版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BLueberry_Pie/article/details/79962566

用Servlvet实现文件上传的功能

// file upload module// It cannot handle nested data (multipart content withinmultipart content)// o...
  • programlover
  • programlover
  • 2001-10-16 18:20:00
  • 477

判断素数的几种方法的总结

素数,又称质数,定义是:除了1和它本身以外不再有其他的除数整除。方法一按照定义,从2到n-1判断有没有能整除n的数。如果有,则不是素数,否则,是素数bool is_prime(int n){ ...
  • qq_21120027
  • qq_21120027
  • 2016-04-09 22:36:56
  • 18267

判断一个数是否为质数/素数——从普通判断算法到高效判断算法思路

定义:约数只有1和本身的整数称为质数,或称素数。 计算机或者相关专业,基本上大一新生开始学编程都会接触的一个问题就是判断质数,下面分享几个判断方法,从普通到高效。1)直观判断法最直观的方法,根据定义,...
  • huang_miao_xin
  • huang_miao_xin
  • 2016-05-06 15:00:14
  • 53296

javascript判断一个数是否是质数

//1、非正则实现 function isPrime(num) { // 不是数字或者数字小于2 if(typeof num !== "number"...
  • longzhoufeng
  • longzhoufeng
  • 2017-06-09 10:23:21
  • 2036

PHP之判断是不是素数

判断是否是素数 素数能被1和它本身整除的 function checknumber($number){ for($i=2;$i...
  • u012493556
  • u012493556
  • 2016-07-16 15:16:04
  • 1699

php判断一个数是否为质数(素数)

以下内容仅为个人参考,如有错误,请多多指教! header('Content-Type:text/html;charset=utf-8'); $num = isset($_GET['num']) ?...
  • wmlml
  • wmlml
  • 2015-08-13 01:33:07
  • 2763

c语言判断一个数是否为质数

判断一个数是否为质数,首先我们需要知道质数的定义:对于大于1的数,如果除了1和它本身,它不能再被其它正整数整除,那么我们说它是一个质数 因此判断一个整数m是否是质数,只需把m被 2 ~ m-1 之间...
  • fuckomg
  • fuckomg
  • 2016-08-08 18:24:10
  • 11472

【转载】几种常见的素数判断算法

求解一个算法,我们首先要知道它的数学含义.依据这个原则,首先我们要知道什么是素数.; 素数是这样的整数,它除了表示为它自己和1的乘积以外,无论他表示为任何两个整数的乘积。找素数的方法多种多样。1:是从...
  • foxiang
  • foxiang
  • 2006-04-08 09:27:00
  • 3690

判断输入任意一个整数,其范围之内包含多少个素数

判断输入任意一个整数,其范围之内包含多少个素数
  • hl582567508
  • hl582567508
  • 2016-09-12 18:26:35
  • 727

Python判断质数(素数)的方法讲解

本文转载自地址:http://www.jb51.net/article/83616.htm 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有...
  • silicon2016
  • silicon2016
  • 2017-03-20 22:25:57
  • 383
收藏助手
不良信息举报
您举报文章:判断质数/素数
举报原因:
原因补充:

(最多只允许输入30个字)