25保研er,希望将自己的面试复习分享出来,供大家参考
part0—英语类
part1—通信类
part2—信号类
part3—高数类
part100—self项目准备
文章目录
3. 概率论要点
3.1 无偏性、有效性、一致性(相合性)
- 无偏性:估计量的期望等于参数真值,即估计不系统偏差。
- 有效性:在所有无偏估计中,方差最小者最有效。
- 一致性:样本数增大时,估计值趋近于真实参数。
✅ 面试常问:“无偏是否代表一致?”、“有效性和方差有什么关系?”
3.2 全概率公式与贝叶斯公式
- 全概率公式:用于将复杂事件的概率,分解为多个互斥事件条件下的加权求和。
- 贝叶斯公式:已知结果,反推出原因;利用先验和似然计算后验概率。
- 对比:全概率——因推果;贝叶斯——果溯因。
✅ 面试常问:“贝叶斯公式的直观解释?”、“和全概率公式的关系?”
3.3 大数定律与中心极限定理
- 切比雪夫大数定律:样本均值趋近于期望,适用于有限方差的变量。
- 伯努利大数定律:事件频率趋近于其真实概率。
- 中心极限定理:大量独立变量之和趋近正态分布,无论原分布如何。
✅ 面试常问:“大数定律和中心极限定理的区别?”、“为什么正态分布广泛存在?”
3.4 常见概率分布
- 正态分布:连续型分布,钟形曲线,均值为对称中心。
- 泊松分布:描述单位时间内某事件发生次数,常用于稀疏事件建模。
- 指数分布:描述等待时间,记忆性强,常用于寿命分析。
✅ 面试常问:“泊松和指数有什么联系?”、“为什么中心极限定理指向正态?”
3.5 概率密度函数(PDF)
- 定义连续型随机变量的分布,函数值本身非概率。
- 用积分求区间概率: P ( a < X < b ) = ∫ a b f ( x ) d x P(a < X < b) = \int_a^b f(x)\,dx P(a<X<b)=∫ab<

最低0.47元/天 解锁文章
3765

被折叠的 条评论
为什么被折叠?



