数据预处理学习(数据无量纲化、填补缺失值、处理分类特征:编码与哑变量、处理连续性特征:二值化与分段)

import pandas as pd
import numpy as np

from sklearn.preprocessing import MinMaxScaler   #归一化Normalization
from sklearn.preprocessing import StandardScaler  #数据标准化
from sklearn.impute import SimpleImputer   #填补缺失值(建议直接使用pandas)
from sklearn.preprocessing import LabelEncoder   #标签专用,能够将分类转换为分类数值
from sklearn.preprocessing import OrdinalEncoder  #特征专用,能够将分类特征转换为分类数值
from sklearn.preprocessing import OneHotEncoder   #独热编码,创建哑变量
from sklearn.preprocessing import Binarizer  #二值化与分段

# 2.1数据无量纲化

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
pd.DataFrame(data)
>>	 0	    1
0	-1.0	2
1	-0.5	6
2	0.0	    10
3	1.0	    18

scaler = MinMaxScaler()     #实例化(归一化)
scaler = scaler.fit(data)    #fit接口,在这里本质是生成min(x)和max(x)
result = scaler.transform(data)   #通过接口导出结果
result
>>
array([[0.  , 0.  ],
       [0.25, 0.25],
       [0.5 , 0.5 ],
       [1.  , 1.  ]])

scaler.inverse_transform(result)
>>
array([[-1. ,  2. ],
       [-0.5,  6. ],
       [ 0. , 10. ],
       [ 1. , 18. ]])

#MinMaxScaler().fit(data).transform(data)   #一步到位

#使用MinMaxScaler的参数feature_range实现将数据归一化到[0,1]以外的范围中
MinMaxScaler(feature_range=(0, 1), copy=True)

scaler_ = StandardScaler()   #实例化,数据标准化
scaler_ = scaler_.fit(data)   #fit,本质是生成均值和方差
result_ = scaler_.transform(data)
#StandardScaler().fit_transform(data)   #熟练后无需分步
#scaler_inverse_transform(result_)   #使用inverse_transform逆转标准化

result_
>>
array([[-1.18321596, -1.18321596],
       [-0.50709255, -0.50709255],
       [ 0.16903085,  0.16903085],
       [ 1.52127766,  1.52127766]])

result_.mean()  #导出的结果是一个数组,用mean()查看均值
>>0.0
result_.std()  #用std()查看方差
>>1.0


# 2.2缺失值(建议直接用pandas)

data = pd.read_csv(r'E:\资料2018.12月始\债权融资\银行提供学习资料\python学习\数据1\Narrativedata.csv',index_col = 0)

data.head()
>>
Age	Sex	Embarked	Survived
0	22.0	male	S	No
1	38.0	female	C	Yes
2	26.0	female	S	Yes
3	35.0	female	S	Yes
4	35.0	male	S	No

data.info()
>>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 0 to 890
Data columns (total 4 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   Age       714 non-null    float64
 1   Sex       891 non-null    object 
 2   Embarked  889 non-null    object 
 3   Survived  891 non-null    object 
dtypes: float64(1), object(3)
memory usage: 34.8+ KB

Age = data.iloc[:,0].values.reshape(-1,1)   ##sklearn当中特征矩阵必须是二维


from sklearn.impute import SimpleImputer   #填补缺失值

imp_mean = SimpleImputer().fit_transform(Age)    #实例化,默认均值填补, 完成调取结果
imp_median = SimpleImputer(strategy='median').fit_transform(Age) #实例化,中值填补, 完成调取结果
imp_0 = SimpleImputer(strategy = 'constant', fill_value = 0).fit_transform(Age) #实例化,0填补, 完成调取结果

data.loc[:,'Age'] = imp_median   #在这里我们使用中位数填补Age

data.info()
>>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 0 to 890
Data columns (total 4 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   Age       891 non-null    float64
 1   Sex       891 non-null    object 
 2   Embarked  889 non-null    object 
 3   Survived  891 non-null    object 
dtypes: float64(1), object(3)
memory usage: 34.8+ KB

#使用众数填补Embarked
Embarked = data.loc[:,"Embarked"].values.reshape(-1,1)
imp_mode = SimpleImputer(strategy = "most_frequent")
data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked)
data.info()
>>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 0 to 890
Data columns (total 4 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   Age       891 non-null    float64
 1   Sex       891 non-null    object 
 2   Embarked  891 non-null    object 
 3   Survived  891 non-null    object 
dtypes: float64(1), object(3)
memory usage: 34.8+ KB

#pandas填充缺失值
data_ = pd.read_csv(r'E:\资料2018.12月始\债权融资\银行提供学习资料\python学习\数据1\Narrativedata.csv',index_col = 0)

data_.iloc[:,0] = data_.iloc[:,0].fillna(data_.iloc[:,0].median())

data_.info()
>>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 0 to 890
Data columns (total 4 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   Age       891 non-null    float64
 1   Sex       891 non-null    object 
 2   Embarked  889 non-null    object 
 3   Survived  891 non-null    object 
dtypes: float64(1), object(3)
memory usage: 34.8+ KB

# 2.3 处理分类型特征:编码与哑变量

from sklearn.preprocessing import LabelEncoder   #标签专用,能够将分类转换为分类数值

y = data.loc[:,'Survived']   #要输入的是标签,不是特征矩阵,所以允许一维

#le = LabelEncoder().fit_transform(y)  #实例化、调用接口并获取结果
le = LabelEncoder()  #实例化
le = le.fit(y)   #导入数据
label = le.transform(y)  ##transform接口调取结果

le.classes_    #属性.classes_查看标签中究竟有多少类别
>>array([0, 1, 2])

data.iloc[:,-1] = label

data.head()
>>
Age	Sex	Embarked	Survived
0	22.0	male	S	0
1	38.0	female	C	2
2	26.0	female	S	2
3	35.0	female	S	2
4	35.0	male	S	0

from sklearn.preprocessing import OrdinalEncoder  #特征专用,能够将分类特征转换为分类数值

data_ = data.copy()

OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_       #查看Sex、Embarked两列的特征类别
>>[array(['female', 'male'], dtype=object), array(['C', 'Q', 'S'], dtype=object)]

data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])   #实例化、调用接口、获取接口并替换原有数据

data_.head()
>>
Age	Sex	Embarked	Survived
0	22.0	1.0	2.0	0
1	38.0	0.0	0.0	2
2	26.0	0.0	2.0	2
3	35.0	0.0	2.0	2
4	35.0	1.0	2.0	0

#独热编码,创建哑变量
data.head()
>>
Age	Sex	Embarked	Survived
0	22.0	1.0	2.0	0
1	38.0	0.0	0.0	2
2	26.0	0.0	2.0	2
3	35.0	0.0	2.0	2
4	35.0	1.0	2.0	0

from sklearn.preprocessing import OneHotEncoder   #独热编码,创建哑变量

X = data.iloc[:,1:-1]

# OneHotEncoder(categories='auto').fit_transform(X).toarray()  #一步到位,其中toarray()稀疏矩阵合并归一化
enc = OneHotEncoder(categories='auto').fit(X)    #实例化、调用接口
result = enc.transform(X).toarray()      #数据结果并稀疏矩阵合并归一
result
>>
array([[0., 1., 0., 0., 1.],
       [1., 0., 1., 0., 0.],
       [1., 0., 0., 0., 1.],
       ...,
       [1., 0., 0., 0., 1.],
       [0., 1., 1., 0., 0.],
       [0., 1., 0., 1., 0.]])

enc.get_feature_names()
>>array(['x0_0.0', 'x0_1.0', 'x1_0.0', 'x1_1.0', 'x1_2.0'], dtype=object)

#依然可以还原
pd.DataFrame(enc.inverse_transform(result))

result.shape
>>(891, 5)

newdata = pd.concat([data,pd.DataFrame(result)],axis=1)
newdata.drop(["Sex","Embarked"],axis=1,inplace=True)
newdata.head()
>>
Age	Survived	0	1	2	3	4
0	22.0	0	0.0	1.0	0.0	0.0	1.0
1	38.0	2	1.0	0.0	1.0	0.0	0.0
2	26.0	2	1.0	0.0	0.0	0.0	1.0
3	35.0	2	1.0	0.0	0.0	0.0	1.0
4	35.0	0	0.0	1.0	0.0	0.0	1.0


newdata.columns =["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]

newdata.head()
>>
Age	Survived	Female	Male	Embarked_C	Embarked_Q	Embarked_S
0	22.0	0	0.0	1.0	0.0	0.0	1.0
1	38.0	2	1.0	0.0	1.0	0.0	0.0
2	26.0	2	1.0	0.0	0.0	0.0	1.0
3	35.0	2	1.0	0.0	0.0	0.0	1.0
4	35.0	0	0.0	1.0	0.0	0.0	1.0


# 2.4 处理连续型特征:二值化与分段

data_2 = data.copy()
data_2.head()
>>
     Age	Sex	Embarked	Survived
0	22.0	1.0	  2.0	      0
1	38.0	0.0   0.0	      2
2	26.0	0.0	  2.0	      2
3	35.0	0.0	  2.0	      2
4	35.0	1.0	  2.0	      0

from sklearn.preprocessing import Binarizer  #连续型特征二值化

X = data_2.iloc[:,0].values.reshape(-1,1)   #类为特征专用,所以不能使用一维数组

transformer = Binarizer(threshold=30).fit_transform(X)    #一步到位,以30为阈值,大于阈值的值映射为1,而小于或等于阈值的值映射为0

transformer[:5]
>>
array([[0.],
       [1.],
       [0.],
       [1.],
       [1.]])

from sklearn.preprocessing import KBinsDiscretizer   #连续型特征分段

X = data_2.iloc[:,0].values.reshape(-1,1)
est = KBinsDiscretizer(n_bins=3,encode='ordinal',strategy='uniform')  
#“ordinal”:每个特征的每个箱都被编码为一个整数,返回每一列是一个特征,每个特征下含有不同整数编码的箱的矩阵
est.fit_transform(X)
>>
.....

#查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel())

est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform')
#"onehot":做哑变量,之后返回一个稀疏矩阵,每一列是一个特征中的一个类别,含有该类别的样本表示为1,不含的表示为0
#查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
>>
array([[1., 0., 0.],
       [0., 1., 0.],
       [1., 0., 0.],
       ...,
       [0., 1., 0.],
       [1., 0., 0.],
       [0., 1., 0.]])


















 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值