如何在微信公众号和知乎使用markdown公式?一般人我不告诉他

如何在知乎和公众号中优雅地写数学公式吗?如何在知乎直接贴 markdown 文件?我发现一个神网站解决了这个问题: mdnice.com

使用 mdnice.com 结合 LaTeX 语法编写数学公式,一键复制到公众号或知乎文章,简直太方便了!如果对 LaTeX 语法不熟悉,可参考知乎问题:知乎上的公式是怎么打出来的?

不如我们来看一下使用 mdnice.com 排版的文章,如下所示:以下来自一个 markdown 文件的一部分:

https://github.com/fengdu78/Data-Science-Notes/blob/master/0.math/1.CS229/markdown/1.CS229-LinearAlgebra.md

排版效果

假设是一个函数,它接受中的向量并返回实数。那么关于黑塞矩阵(也有翻译作海森矩阵),写做:,或者简单地说,矩阵的偏导数:

 

换句话说,,其:

 

注意:黑塞矩阵通常是对称阵:

 

与梯度相似,只有当为实值时才定义黑塞矩阵。

很自然地认为梯度与向量函数的一阶导数的相似,而黑塞矩阵与二阶导数的相似(我们使用的符号也暗示了这种关系)。这种直觉通常是正确的,但需要记住以下几个注意事项。首先,对于一个变量的实值函数,它的基本定义:二阶导数是一阶导数的导数,即:

 

然而,对于向量的函数,函数的梯度是一个向量,我们不能取向量的梯度,即:

 

上面这个表达式没有意义。因此,黑塞矩阵不是梯度的梯度。然而,下面这种情况却这几乎是正确的:如果我们看一下梯度的第个元素,并取关于于的梯度我们得到:

 

这是黑塞矩阵第行(列),所以:

 

简单地说:我们可以说由于:,只要我们理解,这实际上是取的每个元素的梯度,而不是整个向量的梯度。

最后,请注意,虽然我们可以对矩阵取梯度,但对于这门课,我们只考虑对向量取黑塞矩阵。这会方便很多(事实上,我们所做的任何计算都不要求我们找到关于矩阵的黑森方程),因为关于矩阵的黑塞方程就必须对矩阵所有元素求偏导数,将其表示为矩阵相当麻烦。

是不是排版很漂亮?记住markdown神器地址:mdnice.com


发布了242 篇原创文章 · 获赞 268 · 访问量 104万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览