[机器学习]机器学习笔记06—术语解释

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BaiHuaXiu123/article/details/80382821

术语解释

  1. 数据集(data set): 所有记录的集合
  2. 实例或样本: 每一条记录
  3. 属性或特征: 例如,西瓜的色泽等称之为一个属性
  4. 特征向量: 一条记录,如果在坐标轴上表示,每个西瓜都可以用坐标轴中的一个点表示,一个点也是一个向量,例如(青绿,蜷缩,浊响),即每个西瓜即为一个特征向量
  5. 维数: 一个样本的属性(特征)数
  6. 分类: 预测值为离散值的问题
  7. 回归: 预测值为连续值的问题
  8. 归纳: 从特殊到一般的“泛化”过程
  9. 演绎(deduction 从一般到特殊的“特化”(specialization)过程
  10. 假设空间(hypothesis space), 色泽,根蒂,敲声分别有3,2,2种可能取值,则我们面临的假设空间规模大小为4*3*3+1=37
  11. 版本空间(version space)所有假设空间的集合

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试