[机器学习]机器学习笔记06—术语解释

术语解释

  1. 数据集(data set): 所有记录的集合
  2. 实例或样本: 每一条记录
  3. 属性或特征: 例如,西瓜的色泽等称之为一个属性
  4. 特征向量: 一条记录,如果在坐标轴上表示,每个西瓜都可以用坐标轴中的一个点表示,一个点也是一个向量,例如(青绿,蜷缩,浊响),即每个西瓜即为一个特征向量
  5. 维数: 一个样本的属性(特征)数
  6. 分类: 预测值为离散值的问题
  7. 回归: 预测值为连续值的问题
  8. 归纳: 从特殊到一般的“泛化”过程
  9. 演绎(deduction 从一般到特殊的“特化”(specialization)过程
  10. 假设空间(hypothesis space), 色泽,根蒂,敲声分别有3,2,2种可能取值,则我们面临的假设空间规模大小为4*3*3+1=37
  11. 版本空间(version space)所有假设空间的集合
阅读更多

扫码向博主提问

刘玉刚-AI-技术研究院

博客专家

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • 机器学习
  • 深度学习 
  • 自然语言处理
  • HTML5
去开通我的Chat快问
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BaiHuaXiu123/article/details/80382821
文章标签: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

  • 评论

  • 快问
  • 下一篇
  • 上一篇
关闭