机器学习实战

欢迎大家一起学习,一起进步!
关注数:47 文章数:27 热度:82812 用手机看
2017-04-04 11:42:17 阅读数:2608 评论数:2
  • [机器学习]机器学习笔记整理07- KNN算法

    算法描述步骤 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别 细节关于K关于距离的衡量方法:Euclidean Distance 定义 其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距
    2017-04-03 18:12:11 阅读数:1518 评论数:2
  • [机器学习]机器学习笔记整理06-决策树应用

    数据集训练集RID,age,income,student,credit_rating,class_buys_computer 1,youth,high,no,fair,no 2,youth,high,no,excellent,no 3,middle_aged,high,no,fair,yes 4,senior,medium,no,fair,yes 5,senior,low,yes,fair,yes
    2017-04-03 18:06:02 阅读数:1538 评论数:2
  • [机器学习]机器学习笔记整理05-决策树

    机器学习中分类和预测算法的评估:准确率 速度 强壮行 可规模性 可解释性 什么是决策树/判定树(decision tree)?判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。 3.1 决策树归纳算法 (ID3) 1970-1980, J.Ross. Quinlan, ID3算法
    2017-04-03 17:58:18 阅读数:1786 评论数:2
  • [机器学习]机器学习笔记整理04-术语概念解释

    1. 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分类,回归 2. 概念学习:人类学习概念:鸟,车,计算机 定义:概念学习是指从有关某个布尔函数的输入输出训练样例中推断出该布尔函数3. 例子:学习 “享受运动" 这一概念: 小明进行水上运动,是否享受运动取决于很多因素 样例天气温度湿度风力水温预报享受运动1晴暖普通强暖一样是2晴暖大强暖一样是
    2017-04-03 17:51:22 阅读数:1547 评论数:2
  • [机器学习]机器学习笔记整理03-深度学习概述

    机器学习更多应用举例: 人脸识别 机器学习就业需求: LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才 http://blog.linkedin.com/2014/12/17/the-25-hottest-skills-that-got-people-hired-in-2014/ 深度学习(Deep Learning) 3.1 什么是深度学习? 深度学习是基
    2017-04-03 17:48:57 阅读数:1860 评论数:3
  • [机器学习]机器学习笔记整理02-机器学习概述

    2. 机器学习 (Machine Learning, ML) 2.1 概念:多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 2.2 学科定位:人工智能(Artificial Intelligence, AI)的核心,是使计算机具有智
    2017-04-03 17:38:40 阅读数:2395 评论数:2
  • [机器学习]机器学习实践中应避免的七种常见错误

    作者:Cheng-Tao Chu‘s LinkedIn在机器学习领域,每个给定的建模问题都存在几十种解法,每个模型又有难以简单判定是否合理的不同假设。在这种情况下,大多数从业人员倾向于挑选他们熟悉的建模算法,本文作者则认为,模型算法的假设并不一定适用于手头的数据;在追求模型最佳性能时,重要的是选择适合数据集(尤其是“大数据”)的模型算法。以下为正文:统计建模和工程开发很相似。在工程开发中,人们有多
    2017-04-08 07:23:15 阅读数:1759 评论数:2
  • [机器学习]机器学习笔记整理全解

    [机器学习]机器学习笔记整理08- SVM算法原理及实现 [机器学习]机器学习笔记整理07- KNN算法 [机器学习]机器学习笔记整理06-决策树应用 [机器学习]机器学习笔记整理05-决策树 [机器学习]机器学习笔记整理04-基本术语理解 [机器学习]机器学习笔记整理03-深度学习 [机器学习]机器学习笔记整理02-机器学习 [机器学习]机器学习实践笔记01 [机器学习]Sci
    2017-04-06 23:35:35 阅读数:4692 评论数:2
  • [机器学习]机器学习笔记整理08- SVM算法原理及实现

    1 背景最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在1963年提出 目前的版本(soft margin)是由Corinna Cortes 和 Vapnik在1993年提出,并在1995年发表 深度学习(2012)出现之前,SVM被认为机器学习中近十几年来最成功,表现最好的算法2 机器学习的一般框架训练集 => 提取特征向量 => 结合
    2017-04-06 23:22:51 阅读数:2049 评论数:2
  • [机器学习]机器学习笔记整理11-神经网络算法简单实现

    原理[机器学习]机器学习笔记整理10- 神经网络算法1. 关于非线性转化方程(non-linear transformation function)sigmoid函数(S 曲线)用来作为activation function: 1.1 双曲函数(tanh) 1.2 逻辑函数(logistic function) 2. 实现一个简单的神经网络算法#!/usr/bin/python # -*- co
    2017-04-09 16:21:35 阅读数:2420 评论数:2