【Stable Diffusion】Stable Diffusion各类模型描述

StableDiffusion模型正革新数据生成领域,涵盖图像、文本和音频。DDIM利用局部证据传递进行图像生成;CDPM借助PixelCNN++引入条件信息;DPM则能预测未来时刻的数据分布,适用于视频生成等场景。
摘要由CSDN通过智能技术生成

Stable Diffusion 是一种新型的生成模型,它可以用于生成高质量的图像、文本和音频等多种形式的数据。目前已经出现了许多基于 Stable Diffusion 模型的变种,下面简单介绍其中几种比较流行的模型:

模型链接:https://huggingface.co/stabilityai

DDIM (Deep Diffusion Image Model)

DDIM 是 Stable Diffusion 的第一个应用,它采用了局部证据传递(Local Evidence Accumulation)的方法来构建 Diffusion Process。在 DDIM 中,Diffusion Process 通过 N 次迭代来完成,每次迭代包括两个阶段:更新噪声和更新图像。在更新噪声的阶段中,噪声被推断成为观察到的图像与当前候选图像之间的噪声;在更新图像的阶段中,通过候选噪声来构建图像。

CDPM (Conditional Diffusion Process Model)

CDPM 是一种条件 Stable Diffusion 模型,它能够生成给定条件下的高质量图像。与 DDIM 不同,CDPM 采用了 PixelCNN++ 来构建条件估计器,从而将条件信息导入到 Diffusion Process 中。与传统的条件生成模型不同,CDPM 不需要将条件信息与初始噪声混合,而是在 Diffusion Process 中同时处理条件信息和噪声,从而更好地利用条件信息。

Diffusion Probabilistic Models (DPM)

DPM 是一种在多个时刻点上建模数据分布的 Stable Diffusion 模型。与其他 Stable Diffusion 模型不同,DPM 可以预测数据在未来时刻点的分布,这使得 DPM 在视频生成和自动驾驶等领域具有潜在的应用价值。DPM 中的 Diffusion Process 是由许多分数阶微分方程组成的,在每个时刻点上使用一个分数阶微分方程来描述数据的条件分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值