正交实验设计法
正交表是一种特制的表格,一般用
L
n
(
m
k
)
L_n(m^k)
Ln(mk)表示,L代表是正交表,n代表测试用例的个数(正交表的行数),k代表最多可安排影响指标因素的个数(正交表的列数),m表示每个因素水平数(因素的取值个数),且有
n
=
k
∗
(
m
−
1
)
+
1
n=k*(m-1)+1
n=k∗(m−1)+1。
目的:利用正交表来对试验进行设计,通过少数的试验替代全面试验,具备“均匀分散,整齐可比”的特点。
特点:表中任一列,不同数字出现的次数相同;表中任意两列,各种同行数字对出现次数相同。
例题:某被测工程数据库查询语言软件由规格说明书得到的因子-状态表如图所示:
- 提取功能说明,构造因子—状态表(就是上图)
在本题中,共有k=4个因子,m=3个状态 - 加权筛选,生成因素分析表
加权筛选后,共有k=3个因子,m=3个状态 - 利用正交表构造测试数据集
正交表中,每列表示一个因子,每行表示一个项目。
三种情况:
第一种情况:因子的状态数正好和正交表的状态数相等,那么此时只需要直接替换正交表中的值即可。
第二种情况:因子的状态数多于正交表中的状态数,那么此时需要先将多余的状态合并,带入正交表中,然后再将合并的中间状态展开。
第三种情况:因子的状态数少于正交表中的状态数,那么只要将正交表中多出来的状态,使用实际状态
将因素分析表中各因子的状态作为输入,结果作为输出,用逻辑命令把输入与输出结合4在一起,画出布尔图。(两两一组)
上表是如何变到下表的,我想了一晚上,其实核心非常简单,就是:等价代换。
我觉得如果把上表的B1->B12后,可能会更好理解。因为B12对应两个节点,所以应该加以展开。
展开方法:当B12=1时,用一个小的正交表替换,其余列复制即可。