USACO1.2.2 - transform

复习累了就做做题目,今天这个程序让我很好的感受到了把一个程序写成不同的功能模块的好处。(虽然我这个小程序都不能称为什么模块化)。这个题目我错了好多次,但是还好我每种变换都对应了一个函数,所以找起错误了很方便,而且总体的思路也比较的清晰。usaco的题目都可以在nocow上面找到翻译,所以我就不再赘述题目的意思了。

题目链接:http://cerberus.delos.com:790/usacoprob2?a=FjdZ7dkHoSz&S=transform

代码:

/*
  ID:sunexio2
  PROG:transform
  LANG:C++
 */
#include <iostream>
#include <fstream>
using namespace std;

ifstream fin ("transform.in");
ofstream fout("transform.out");
char p[15][15];
char q[15][15];
int  n;

int check1(){
	for(int i = 0; i < n; ++i)
		for(int j = 0; j < n; ++j)
			if(p[n - j - 1][i] != q[i][j])
				return 0;
	return 1;
}

int check2(){
	for(int i = 0; i < n; ++i)
	{
		for(int j = 0; j < n; ++j)
		{
			if(p[n - i - 1][n - j - 1] != q[i][j])
				return 0;
		}
	}
	return 1;
}

int check3(){
	for(int i = 0; i < n; ++i)
	{
		for(int j = 0; j < n; ++j)
		{
			if(p[j][n - i - 1] != q[i][j])
				return 0;
		}
	}
	return 1;
}

int check4(){
	for(int i = 0; i < n; ++i)
	{
		for(int j = 0; j < n; ++j)
		{
			if(p[i][n - j - 1] != q[i][j])
				return 0;
		}
	}
	return 1;
}

int check5(){
	char h[15][15];
	bool flag = 1;
    for(int i = 0; i < n; ++i)
		for(int j = 0; j < n; ++j)
			h[i][j] = p[i][n - j - 1];
	for(int i = 0; i < n; ++i)
		for(int j = 0; j < n; ++j){
			if(p[i][j] != q[i][j])
				flag = 0;
		    p[i][j] = h[i][j];
		}
    if(check1())
	{
		fout << 5 << endl;
		return 1;
	}
	if(check2())
	{
		fout << 5 << endl;
		return 1;
	}
	if(check3())
	{
		fout << 5 << endl;
		return 1;
	}
	if(flag)
	{
		fout << 6 << endl;
		return 1;
	}
	return 0;
}

/*int check6(){
	for(int i = 0; i < n; ++i)
		for(int j = 0; j < n; ++j)
			if(p[i][j] != q[i][j])
				return 0;
	return 1;
	}*/


int main(){
	while(fin >> n)
	{
		for(int i = 0; i < n; ++i)
			fin >> p[i];
		for(int i = 0; i < n; ++i)
			fin >> q[i];
		if(check1())
			fout << 1 << endl;
		else if(check2())
			fout << 2 << endl;
		else if(check3())
			fout << 3 << endl;
		else if(check4())
			fout << 4 << endl;
		else if(check5()) ;
			//	fout << 5 << endl;
		/*	else if(check6())
			fout << 6 << endl;*/
		else
			fout << 7 << endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值