没事就刷刷的牛客网1——算法笔试题1

没事就刷刷的牛客网1——算法笔试题1

学习前言

有些慌有些紧张~
在这里插入图片描述

题目相关技能

在这里插入图片描述

题目

数据结构

  1. 链表具有的特点是:所需空间与长度成正比
  2. 一个二叉树的前序遍历:ACDFBE,中序遍历:DCFAEB,后序遍历为DFCEBA
    前序遍历——根、左、右
    中序遍历——左、根、右
    后序遍历——左、右、根
  3. 归并排序算法用到了分治思想

  4. 二叉树可以用数组存储,也可以用链表存储
    完全二叉树更适合用链表存储
    是一种完全二叉树
    二叉树的顺序存储,寻找后代节点和祖先节点都非常方便,但对于普通的二叉树,顺序存储浪费大量的存储空间,同样也不利于节点的插入和删除。因此顺序存储一般用于存储完全二叉树。
    链式存储相对顺序存储节省存储空间,插入删除节点时只需修改指针,但寻找指定节点时很不方便。不过普通的二叉树一般是用链式存储结构。
  5. 线程是CPU时间调度的最小单位
  6. 优先级队列比较适合使用这种数据结构实现
  7. 关键字序列
  8. 常见的不稳定排序算法有:快速排序、希尔排序、选择排序、堆排序
  9. 在最坏的情况下,堆排序的时间复杂度最小
  10. 10.设散列表的长度为8,散列函数H(k)=k mod 7,初始记录关键字序列为(31,23,26,14,12,19),计算用链地址法作为解决冲突方法的平均查找长度是1.5
    在这里插入图片描述
  11. 深度优先搜索法拓扑排序法广度优先搜索法可以判断出一个有向图是否有环(回路)
  12. 激活函数只能是非线性函数

机器学习

  1. 在其他条件不变的前提下,SVM算法中使用高斯核/RBF核代替线性核容易引起机器学习中的过拟合问题
  2. 机器学习中L1正则化L2正则化
    使用L1可以得到稀疏的权值
    使用L2可以得到平滑的权值
  3. 聚类分析可以看作是一种非监督的分类
  4. 参数共享、Dropout、扩充验证集可以防止深度学习模型过拟合
    过拟合出现的原因:训练集数据相对太少,而模型参数又相对比较复杂(参数也会相对较多),导致模型“记住”了训练数据,因此泛化能力较弱,出现过拟合
  5. bagging、stacking、boosting、blending都属于集成方法
  6. 关于ROC曲线:
    ROC曲线的x轴代表假正类率(false positive rate, FPR)
    ROC曲线的Y轴代表真正类率(true positive rate ,TPR)
    AUC的值就是处于ROC 曲线下方的那部分面积的大小,通常介于0.5到1.0之间
    AUC值越大,模型的分类效果越好
  7. LR可以用于预测事件发生概率的大小
    SVM目标是结构风险最小化
    SVM分类依据是支持向量
    逻辑回归本质上是一种根据样本对权值进行极大似然估计的方法,而后验概率正比于先验概率和似然函数的乘积。LR仅仅是最大化似然函数,并没有最大化后验概率
    Logit回归的输出就是样本属于正类别的几率,可以计算出概率
    SVM的目标是找到使得训练数据尽可能分开且分类间隔最大的超平面,应该属于结构风险最小化
    SVM可以通过正则化系数控制模型的复杂度,避免拟合
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读