96. Unique Binary Search Trees

问题描述

Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?

For example,
Given n = 3, there are a total of 5 unique BST’s.

题目链接:


思路分析

给一数n,计算n个数可以生成多少个不同的二叉搜索树。

这是一个动态规划题目,对于n个数,在排序之后,如果选择第一个数作为根,那么就有G(0)种左子树和G(n-1)种右子树的排法;如果选第二个数为根,就有G(1)种左子树和G(n-2)种右子树的排法……G(0) = G(1) = 1,所以就可以用一个数组保存不同n的组成的BST的数目。每一个新的n重新计算即可。

代码

class Solution {
public:
    int numTrees(int n) {
        vector<int> G;
        G.push_back(1);
        for (int i = 1; i <= n; i++){
            int t = 0;
            for (int j = 0; j < i; j++)
                t += G[j] * G[i - j - 1];
            G.push_back(t);
        }
        return G.back();
    }
};

时间复杂度:O(n2)
空间复杂度:O(n)


反思

理解二叉搜索树的构造比较重要,它是可以选择任意一个数作为根的,只不过对于结构有特定的要求。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BigFatSheep/article/details/79969029
个人分类: Leetcode Medium
上一篇16. 3Sum Closest
下一篇384. Shuffle an Array
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭