B树

B 树又叫平衡多路查找树。一棵m阶的B 树 (注:切勿简单的认为一棵m阶的B树是m叉树,虽然存在四叉树,八叉树,KD树,及vp/R树/R*树/R+树/X树/M树/线段树/希尔伯特R树/优先R树等空间划分树,但与B树完全不等同)的特性如下:

树中每个结点最多含有m个孩子(m>=2);
除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);
若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);
所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);(读者反馈@冷岳:这里有错,叶子节点只是没有孩子和指向孩子的指针,这些节点也存在,也有元素。@研究者July:其实,关键是把什么当做叶子结点,因为如红黑树中,每一个NULL指针即当做叶子结点,只是没画出来而已)。
每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,……,Kn,Pn)。其中:
a) Ki (i=1…n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。
b) Pi为指向子树根的接点,且指针P(i-1)指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)。
c) 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。如下图所示:

比如一颗(3,5)B树
根结点:最少1个key,2子树;最多4key,5子树。
其他节点:最少2key,3子树;最多4key,5子树
叶子节点:最少2key,最多4key。
可以看出,阶数是描述子树树木的,key要减1.

插入

  1. 插入新的key到合适的叶子节点
  2. 如果出现溢出,即大于(2a - 1或者m-1)keys了,将节点分裂,用中间的作为新的key分成两个子树,合并到上一层,保持叶子节点都在同一层。
  3. 如果第二步导致上一层也溢出了,递归向上。

删除

  1. 如果删除的不是叶子节点,用直接或间接的后继代替,(如二叉搜索树用最大左子树节点或最小右子树代替),总之每次删除的一定是叶子节点。
  2. 如果没有向下溢出,删除即可
  3. 如果向下溢出了:
    • 尝试向邻居借用一个key
    • 如果邻居被借用后会不足,那就将两个合并。
    • 根据实际需要,调整parent的key值,与叶子的key互换。

效率

All operations access O(loga n) nodes, where n is the number of keys.

阅读更多
个人分类: 数据结构
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭