Description
Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root. Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.
Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn’t have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.
The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.
The right-most node is also defined by the same way with left and right exchanged.
Example 1
Input:
1
2
/
3 4
Ouput:
[1, 3, 4, 2]
Explanation:
The root doesn’t have left subtree, so the root itself is left boundary.
The leaves are node 3 and 4.
The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.
So order them in anti-clockwise without duplicates and we have [1,3,4,2].
Example 2
Input:
1_
/
2 3
/ \ /
4 5 6
/ \ /
7 8 9 10
Ouput:
[1,2,4,7,8,9,10,6,3]
Explanation:
The left boundary are node 1,2,4. (4 is the left-most node according to definition)
The leaves are node 4,7,8,9,10.
The right boundary are node 1,3,6,10. (10 is the right-most node).
So order them in anti-clockwise without duplicate nodes we have [1,2,4,7,8,9,10,6,3].
Solution
找到一棵二叉树逆时针绕一圈的boundary。
We divide the boundary into three part. Using recursion to solve them one by one.
For left boundary, it is kind like in-order traverse, add node.val then go to left child fisrt, if not go right. When node is null or is leaf node, return.
For leaves, it is simple, recusion on left first, if it is a leaf, add to res.
For right boundary, it is different, since we want to iterate from bottom up. It is kind like post order iteration. Go right first, no node then add it to res.
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private List<Integer> res = new ArrayList<>();
public List<Integer> boundaryOfBinaryTree(TreeNode root) {
if (root == null){
return res;
}
res.add(root.val);
leftBoundary(root.left);
leaves(root.left);
leaves(root.right);
rightBoundary(root.right);
return res;
}
private void leftBoundary(TreeNode node){
if (node == null || (node.left == null && node.right == null)){
return;
}
res.add(node.val);
if (node.left == null){
leftBoundary(node.right);
}
else{
leftBoundary(node.left);
}
}
private void rightBoundary(TreeNode node){
if (node == null || (node.left == null && node.right == null)){
return;
}
if (node.right == null){
rightBoundary(node.left);
}
else{
rightBoundary(node.right);
}
res.add(node.val);
}
private void leaves(TreeNode node){
if (node == null){
return;
}
if (node.left == null && node.right == null){
res.add(node.val);
return;
}
leaves(node.left);
leaves(node.right);
}
}
Time Complexity: O(n)
Space Complexity: O()

1115

被折叠的 条评论
为什么被折叠?



