Bill_Yang_2016的博客

博客已搬迁至http://bill.moe

[HNOI2002][poj1091]跳蚤


题目描述

  Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。
  比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。
  当确定N和M后,显然一共有MN张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。


输入格式

输入文件有且仅有一行,包括用空格分开的两个整数N和M。


输出格式

输出文件有且仅有一行,即可以完成任务的卡片数。
1≤M≤10^8,1≤N≤M,且MN≤10^16。


样例数据

样例输入

2 4

样例输出

12


样例说明

这12张卡片分别是:
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)


题目分析

这题稍微有点难。。
题意很好理解,即为不定方程

x1a1+x2a2+...+xn+1an+1=1

要有解,须满足系数最大公约数为1,详细见这儿
于是只需要将小于M中不与M互质的数去掉即可,利用容斥原理可以得到设t(k)为数列gcd为k个质因子乘积的数列个数
故Ans=m^n-t(1)+t(2)-t(3)…(-1)^k*t(k)


源代码

#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
typedef long long LL;
inline const LL Get_Int() {
    LL num=0,bj=1;
    char x=getchar();
    while(x<'0'||x>'9') {
        if(x=='-')bj=-1;
        x=getchar();
    }
    while(x>='0'&&x<='9') {
        num=num*10+x-'0';
        x=getchar();
    }
    return num*bj;
}
LL n,m,Ans=0,tot,cnt=0,num[105],ans[105];
LL Quick_Pow(LL a,LL b) {
    LL ans=1;
    while(b>0) {
        if(b&1)ans*=a;
        b>>=1;
        a*=a;
    }
    return ans;
}
void Divide(LL x) {
    cnt=0;
    for(int i=2; i<=sqrt(x); i++)
        if(x%i==0) {
            num[++cnt]=i;
            while(x%i==0)x/=i;
        }
    if(x!=1)num[++cnt]=x;
}
void Dfs(LL Last,LL Limit,LL Now) {
    if(Now>Limit) {
        LL sum=m;
        for(int i=1; i<=Limit; i++)sum/=ans[i];
        tot+=Quick_Pow(sum,n);
        return;
    }
    for(int i=Last+1; i<=cnt; i++) {
        ans[Now]=num[i];
        Dfs(i,Limit,Now+1);
    }
}
int main() { 
    n=Get_Int();
    m=Get_Int();
    Divide(m);
    Ans=Quick_Pow(m,n);
    for(int i=1; i<=cnt; i++) {
        tot=0;
        memset(ans,0,sizeof(ans));
        Dfs(0,i,1);
        if(i&1)Ans-=tot;
        else Ans+=tot;
    }
    printf("%lld\n",Ans);
    return 0;
}

阅读更多
版权声明:全文无版权,目前博客已搬迁至https://bill.moe https://blog.csdn.net/Bill_Yang_2016/article/details/53995994
上一篇[poj2142] 天平The Balance
下一篇[poj1305] 毕达哥拉斯
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭