比特币(BSV)知识库:比特币原理-Mandala网络(Mandala Network)

BSV知识库 专栏收录该内容
79 篇文章 3 订阅

特别提示:

比特币(BSV)知识库-Bitcoin wiki-目前为全英文内容,暂无中文译文,并且仍在持续编写和补充中。欢迎中国的开发者在文章底部评论,进行阐述和探讨。

Mandala Network

Mandala networks refer a family of networks are fast and cost-effective yet robust against failures and attacks. They are built up in layers, or shells/generations, and their name derives from their visual similarity to Mandala images.

They are defined by construction in [1] as a mathematical graph with certain rules for the distribution of nodes and edges in each shell, and how they connect to nodes in the shell below. They are characterised by being

  • Ultra-small-world
  • Highly sparse

In the basic method for construction, Mandala networks are characterised by three paramaters , where  is the number of nodes in the first generation,  is the number of new nodes added to each node in subsequent shells, and  is the number of connections between nodes in the same shell (other than the first shell). The choice of these parameters determines a type of Mandala network, where a unique Mandala network is determined by type and total number of shells .

In the first shell there are nodes that form a connected graph.  A second shell is created by connecting each node in the first shell with  nodes in the second shell, and connecting each node in the second shell to  nodes in the second shell. This method is used to create a third shell where, in addition, each node is also connected to its ancestor node in the first shell. This process can be repeated itaratively to create  shells. Because each node is connected directly to a node in the first shell, and each node in the first shell is directly to another node in the first shell, the maximum shortest path length between nodes is 3.

If the number of nodes in each shell is labelled by  then the total number of nodes on the network is given by

Due to the symmetry of the construction, the mean shortest path length is given by

where  is the sum of the shortest path lengths connecting a node in the -th shell with all other nodes in the network. It can be shown that

where  is a constant which may be determined for each network. It can be shown that , where as 

References

(1) Mandala Networks: ultra-small-world and highly sparse graphs, Sampaio Filho, C., Moreira, A., Andrade, R. et al. Sci Rep 5, 9082 (2015) doi:10.1038/srep09082

声明:

比特币(BSV)知识库项目由比特币协会(Bitcoin Association)发起并支持,更多信息请参见知识库官网:https://wiki.bitcoinsv.io/


  • 对比特币区块链开发感兴趣的朋友可以通过CSDN站内私信联系我们,申请加入BSV开发者交流群。
  • 同时,您也可以扫描下方二维码,关注比特币协会官方微信公众号——BA资讯,了解更多区块链领域的实时资讯。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值