BSV知识库 专栏收录该内容
79 篇文章 3 订阅

# Mandala Network

Mandala networks refer a family of networks are fast and cost-effective yet robust against failures and attacks. They are built up in layers, or shells/generations, and their name derives from their visual similarity to Mandala images.

They are defined by construction in [1] as a mathematical graph with certain rules for the distribution of nodes and edges in each shell, and how they connect to nodes in the shell below. They are characterised by being

• Ultra-small-world
• Highly sparse

In the basic method for construction, Mandala networks are characterised by three paramaters , where  is the number of nodes in the first generation,  is the number of new nodes added to each node in subsequent shells, and  is the number of connections between nodes in the same shell (other than the first shell). The choice of these parameters determines a type of Mandala network, where a unique Mandala network is determined by type and total number of shells .

In the first shell there are nodes that form a connected graph.  A second shell is created by connecting each node in the first shell with  nodes in the second shell, and connecting each node in the second shell to  nodes in the second shell. This method is used to create a third shell where, in addition, each node is also connected to its ancestor node in the first shell. This process can be repeated itaratively to create  shells. Because each node is connected directly to a node in the first shell, and each node in the first shell is directly to another node in the first shell, the maximum shortest path length between nodes is 3.

If the number of nodes in each shell is labelled by  then the total number of nodes on the network is given by

Due to the symmetry of the construction, the mean shortest path length is given by

where  is the sum of the shortest path lengths connecting a node in the -th shell with all other nodes in the network. It can be shown that

where  is a constant which may be determined for each network. It can be shown that , where as

## References

(1) Mandala Networks: ultra-small-world and highly sparse graphs, Sampaio Filho, C., Moreira, A., Andrade, R. et al. Sci Rep 5, 9082 (2015) doi:10.1038/srep09082

• 对比特币区块链开发感兴趣的朋友可以通过CSDN站内私信联系我们，申请加入BSV开发者交流群。
• 同时，您也可以扫描下方二维码，关注比特币协会官方微信公众号——BA资讯，了解更多区块链领域的实时资讯。

• 0
点赞
• 0
评论
• 0
收藏
• 扫一扫，分享海报

01-07 1096
12-20 586
12-03 4906
12-03 332
12-01 1055
12-22 1572
12-21 892
12-17 910
12-16 883
12-16 2198
12-01 1199

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。