空间分析极其应用

01 GIS 专栏收录该内容
4 篇文章 0 订阅
什么是空间分析?
       空间分析 Spacial Analysis 是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。空间分析的对象是空间数据,空间分析的结果直接依赖于分析对象的空间位置,如果分析对象的空间位置发生了变化,则分析的结果也随之变化。正是这种对分析对象空间位置信息的依赖,形成了空间分析与传统统计分析的根本性差异,因为在后者中目标的空间位置与分析结果是无关的。
       通过空间分析可以发现隐藏在空间数据之后的更重要的信息,甚至是有关空间问题的一般性规律。因而,从这个意义上说,空间分析页可以看作是一个知识发现的过程。可以说空间分析反映了人们对于空间数据的理解与解译能力,也决定着人们利用空间数据的深度和广度。随着空间分析技术的不断发展,GIS也将由一般的空间事务处理向分析型的空间决策支持方向迈进。
空间分析在地理信息系统中的地位及其作用如何?
       要了解空间分析在地理信息系统(GIS)中的地位及其作用,我们必须首先明确一个概念——什么是地理信息系统(Geographical Information System,简称GIS)。
       从地理信息系统在实际应用中的作用与地位来看,目前对地理信息系统的认识可归纳为三个相互独立又相互关联的观点。一是地图观点,强调地理信息系统作为信息载体与传播媒介的地图功能,认为地理信息系统是一种地图数据处理与显示系统,在此,每个地理数据集可看成是一张地图,通过地图代数实现数据的操作与运算,其结果仍然表现为一张具有新内容的地图。测绘及各种专题地图部门非常重视地理信息系统的快速生产高质量地图的能力。第二种观点称为数据库观点,多为具有计算机科学背景的用户所接纳,强调数据库系统在地理信息系统中的重要地位,认为一个完整的数据库管理系统是任何一个 成功的地理信息系统不可缺少的部分。第三种观点则是分析工具观点,强调地理信息系统的空间分析与模型分析功能,认为地理信息系统是一门空间信息科学。
由于地理信息系统只有 30 多年的发展历史,一些相关的概念、理论正在日新月异,而且,地理信息系统综合了地图学、摄影测量与遥感、地理学、计算机科学、城市规划与管理等许多门学科,因而不同的学者从不同的角度对地理信息系统都有不同的理解。但是,上述的第三种观点普遍地为地理信息系统界所接受,并认为这是区分地理信息系统与其它地理数据自动化处理系统的唯一特征。因此,我认为, 地理信息系统是 由计算机系统、地理数据和用户组成的,通过对地理数据的集成、存储、检索、操作和 分析 ,生成并输出各种地理信息,从而为土地利用、资源管理、环境监测、交通运输、经济建设、城市规划以及政府各部门行政管理提供 新的知识 ,为工程设计和规划、管理 决策服务 它与一般的管理信息系统相比,具有以下两个显著特征:( 1 地理信息系统在分析处理问题中使用了空间数据与属性数据,并通过数据库管理系统将两者联系在一起共同管理、分析和应用,从而提供了认识地理现象的一种新的思维方法;而管理信息系统则只有属性数据库的管理,即使存储了图形,也往往以文件形式等机械形式存储,不能进行有关空间数据的操作,如空间查询、检索、相邻分析等,更无法进行复杂的空间分析。( 2 地理信息系统强调空间分析,通过利用空间解析式模型来分析空间数据,地理信息系统的成功应用依赖于空间分析模型的研究与设计。
因此,我们有理由认为,空间分析是地理信息系统的主要特征,也是评价一个地理信息系统功能的主要指标之一,是地理信息系统区别于一般信息系统的主要功能特征。与一般的地理数据库相比,地理信息系统应该具有更为全面、丰富、完善的空间和非空间分析功能,尤其是一些专门的应用模型,更是地理信息系统的核心功能之一。一个地理信息系统如果不提供空间数据的分析处理功能,实际上它久蜕化为一个地理数据库;相反,一个地理数据库如果加强了空间数据的分析处理功能,它就升格为一个地理信息系统。这就是空间分析在地理信息系统中的地位和作用。
空间分析的关键问题是什么?
基于地理信息系统的空间分析技术方法包括以下两大类:
(1)空间基本分析,也即基于图的分析。该分析功能与GIS其他功能模块有紧密联系,技术发展也比较成熟。主要有空间信息量算、缓冲区分析、空间拓扑叠置分析、网络分析、复合分析、邻近分析及空间联结、空间统计分析等。
(2)空间模拟分析,也称为专业型空间分析。该技术解决应用领域对空间数据处理与输出的特殊要求,空间实体和关系通过专业模型得到简化和抽象,而系统则通过模型进行分析操作。
目前,现有GIS的空间分析仍旧停留在应用层次分析的第一个层次上,即已经能够以数字化方式较好地描述地理实体和地理现象的空间分布关系,但这种描述是静态的,局部的,不能反映地理实体的内在规律和变化趋势,具体表现在GIS 目前支持地理区域或现象的快照型查询,但是缺乏对用户感兴趣的时空变化的模拟仿真功能的支持。目前 GIS的空间分析功能偏弱已成为业界的共识,这一弱点也严重地阻碍了 GIS作为空间数据分析和研究工具的使用,使得 GIS只是一个“数据丰富而理论薄弱 Data Rich But Theory Poor ”的环境。如何建立有效的空间数据模型来表达地理实体的时空特性以及如何发展面向应用的时空分析模拟方法是目前 GIS及其相关领域研究的热点,同时也是 GIS向决策应用领域深入发展以及实施“数字地球”战略必须解决的问题。
那么,什么样的模型和方法能够满足GIS空间分析的需要呢?Openshow在深入研究了GIS空间分析的基础上,提出了GIS相关的分析模型所必须具备的一些条件,主要包括:
( 1) 空间数据分析技术应能顺利处理极大量的(数十到数百万) 空间对象的数据, 以满足GIS处理大量数据的需求;
( 2) GIS相关的空间数据分析技术应该对空间数据的特殊性敏感;
( 3) GIS相关的空间数据分析技术与模型应独立于特定研究区;
( 4) GIS相关的空间数据分析技术应该是安全的, 即, 其分析结果是可靠的、稳健的( Robust)、抑制误差与噪声的, 且不在任何重要方面依赖于标准分布;
( 5) GIS相关的空间数据分析技术应该是实用的, 即面向与GIS相关的空间分析任务;
( 6) GIS相关的空间数据分析技术应该是通用的;
( 7) GIS相关的空间数据分析技术易于理解和应用的;
( 8) 空间数据分析的结果应该是可用地图表达的。因为GIS是一个高度可视化的面向图形的技术。
由此可见,未来的空间分析技术是基于数据驱动而非理论驱动的,是探索性的( Exploratory)而非推理性的(Inferential),它需要大量的空间数据拟合推测而非基于某些空间假设的理论推导。传统的地理过程模拟模型如系统动力学模型、社会物理学模型等不能满足GIS空间分析条件的需要,必须探索新的强有力的工具应用于GIS空间分析。
那么,怎样建立空间分析的模型呢?
模型是人类对事物的一种抽象,人们在正式建造实物前,往往首先建立一个简化的模型,以便抓住问题的要害,剔除与问题无关的非本质的东西,从而使模型比实物更简单明了,易于把握。同样为了解决复杂的空间问题,人们也试图建立一个简化的模型,模拟空间分析过程。空间分析建模,由于是建立在对图层数据的操作上的,又称为 “地图建模”( Cartographic Modeling),它是通过组合空间分析命令操作以回答有关空间现象问题的过程,更形式化一些的定义是通过作用于原始数据和派生数据的一组顺序的、交互的空间分析操作命令,对一个空间决策过程进行的模拟。地图建模的结果得到一个“地图模型”,它是对空间分析过程及其数据的一种图形或符号表示,目的是帮助分析人员组织和规划所要完成的分析过程,并逐步指定完成这一分析过程所需的数据。地图模型也可用于研究说明文档,作为分析研究的参考和素材。
地图建模可以是一个空间分析流程的逆过程,即从分析的最终结果开始,反向一步步分析为得到最终结果,哪些数据是必须的,并确定每一步要输入的数据以及这些数据是如何派生而来。以下的例子将说明其过程:
假定需要获得这样一个结果,即要显示出所有坡度大于 20度的地区。首先的问题是要生成这样一幅图像,哪些数据是必须具备的:如要生成一幅坡度大于20度的图像,需要一幅反映所有坡度的图像,数据库里有这样的图像吗?如果没有,就进一步沿着反向思路提问:“如要生成一幅所有坡度的图像,需要什么样的数据?”。一幅高程数据图像可用于生成坡度图像。那么,这幅高程数据图像有没有呢?如果没有的话,生成该图像需要何种数据?这一过程一直持续,直至找出所有必备数据为止。然后反向用图形或符号将有关数据及其操作流程表示出来就得到一个地图模型。本例表示如图1(图中,矩形框内为数据,箭头表示操作命令,方向表示操作顺序):
图 1:提取坡度大于20度的计算流程
实例
实例一  城市公园分布研究
       加拿大多伦多市的政府部门曾面临这样一个来自民间组织的指责:多伦多市现有公园的分布是偏向富人居住区的。因此,需要在市内贫苦地区再增设公园和其它公共娱乐设施,在做出增设公园和其它公共娱乐设施的决定之前,有必要弄清楚上述指责是否成立,这是问题的关键之所在。
       假设上述职责成立,那么应该有如下三个方面的证据:就住户的分布情况而言,50%以上的贫苦人口居住户离公园较远;就人口的分布情况而言,大部分贫苦人口居住在离公园较远的地方;就人均收入分布而言,离公园较远的居民的平均收入低于离公园较近的居民的平均收入。
       首先,对“富裕程度”和“方便性”两个概念进行如下的定义:以家庭收入代表富裕程度,高于全市平均水平的为富裕,反之则为贫苦;以到公园的实地距离代表方便性,实地距离小于全市平均水平的为近,反之则为远。以人口普查小区(EA)作为最小运算单位,然后,以EA为单元收集平均收入,总人口数和总住户数资料,并通过编码在市区底图上标识每个EA的位置,通过公园分布图显示公园的空间分布。
       将EA原始数据输入GIS,利用系统的空间量算和统计功能,分别计算每个EA到所有公园的平均距离(D 1),全市的EA到公园的平均距离(D),每个EA的家庭平均收入(I 1),全市家庭的平均收入(I),根据富裕程度和方便性定义,将所有人口普查小区划分为贫与富,远与近四个集合:
EA :D 1<D      EA :D 1<D
EA :I 1< I       EA :I 1< I
通过四个集合的运算,检验前述三个方面证据是否存在,从而得出问题的结论,如图2所示:

图2:城市公园分布计算流程
实例二 森林火灾模拟
森林火灾是一种常见的自然灾害,当森林火灾发生时,快速准确地模拟和预测火势的蔓延和发展,对于及时部署灭火力量,搬迁居民,减少人民生命财产损失,具有重大的实际意义。这个例子将从建立Rothermel的林火蔓延模型开始,详细介绍空间分析的一个成功应用。   
Rothermel的林火蔓延模型主要考虑的因素有:
1)森林的材质:包括燃料物质载荷、燃料深度、燃料粒子密度、热容量、灭火所需湿度等。
2)燃料湿度、空气温度。
3)风速、风向。
4)地形坡度。
模型可以计算林火的蔓延速率,火灾的强度、范围和面积等。
基于该模型的框架,一些研究人员结合元胞自动机原理和GIS,建立了新的林火模型。该模型是一个二维元胞自动机模型,基本假设条件有:森林均匀分布,材质均一;地形为平原,不考虑地形影响;风向随机,即不考虑风向影响。模型的特征如下:
元胞空间:元胞空间是将实际研究区按照一定分辨率划分的离散网格,格网单元为正方形单元,与GIS栅格数据结构一致。
元胞状态:每个元胞具有四种状态,0代表无森林覆盖,1代表未燃森林,2,代表正在燃烧森林,3代表已烧过的森林。
邻域定义:每个元胞以8个相邻元胞作为其邻域元胞。
转换规则:林火蔓延规则,即在燃元胞的扩展规则。我们假定在燃元胞可以一次点燃周围邻居中的所有未燃森林,具体规则如下:
如果n i,j ( t ) = 0或 n i,j ( t ) = 3,则n i,j ( t +1 ) = n i,j ( t ) ;
如果n i,j ( t ) = 2,则n i,j ( t +1 ) = 3 ;
如果n i,j ( t ) = 1且 n ( t ) = 2(n 为邻居元胞集合中的元素),则n i,j ( t +1 ) = 2;
否则,n i,j ( t +1 ) = 1。   
这是一个对现实高度简化的林火蔓延模型,蔓延表现为由火点向四周成圆形扩散,基本上反映了一个理想化林火蔓延过程。实际上这个模型是一个最基本的二维通用扩散模型,可以在此基础上,加以改进、扩展,用来模拟疾病传播、污水扩散等现象。
为了更加真实的模拟林火行为过程,对上面的理想模型进行了扩展,扩展后具体模型如下。
元胞空间:与理想模型一致,只是在应用中与数字高程模型、遥感影象等数据的分辨率相匹配。
元胞状态:元胞的状态除表示森林燃烧状态外,还扩展了森林材质、湿度、地形坡度、风速风向等变量。另外为了更精确描述燃烧的过程,燃烧状态又细分成三个子状态,其中21表示刚刚被点燃的森林,22表示火势旺盛的森林,23表示由明火转向暗火的森林(逐渐熄灭)。由于不同材质的森林在各个燃烧阶段的持续时间不同,气温和湿度也会对燃烧阶段的持续时间产生影影响,所以在森林着火之前,需要确定各个森林元胞一旦着火后,处于燃烧三个子阶段的时间(可以通过GIS再分类命令实现)RT1,RT2,RT3。其它三个状态不变,还是0代表无森林覆盖,1代表未燃森林,3代表已烧过的森林。
邻域定义:每个元胞以8个相邻元胞作为其邻域元胞。
转换规则:林火蔓延规则进行了扩展。假定只有状态为22的元胞,燃烧正旺的森林才能点燃其邻域元胞;状态为21的元胞刚被点燃,火势较小不会点燃周围元胞;状态为23的元胞则由于火势减弱,也无法点燃周围元胞。具体的转换规则如下:
如果n i,j ( t ) = 0或 n i,j ( t ) = 3,则n i,j ( t +1 ) = n i,j ( t ) ;
如果n i,j ( t ) = 21,则有
若RT i,j>RT1 i,j ,则n i,j ( t +1 ) = 22 ;
否则n i,j ( t +1 ) = 21,RT i,j= RT i,j+1;
如果n i,j ( t ) = 22,则有
若RT i,j> RT1 i,j +RT2 i,j ,则n i,j ( t +1 ) = 23;
否则n i,j ( t +1 ) = 22,RT i,j= RT i,j+1;
如果n i,j ( t ) = 23,则有
若RT i,j>= RT1 i,j +RT2 i,j +RT3 i,j,则n i,j ( t +1 ) = 3;
否则n i,j ( t +1 ) = 23,RT i,j= RT i,j+1;
如果n i,j ( t ) = 1且 n ( t ) = 22(n 为邻居元胞集合中的元素),
若当前元胞被点燃的可能性超过设定的概率水平后,则n i,j ( t +1 ) = 21,RT i,j= 0;
否则,n i,j ( t +1 ) = 1。   
其中,计算森林元胞被邻域元胞点燃的可能性的计算方法是:
首先得到元胞状态为22的各个元胞点燃周围森林的可能性向量P k,如图3所示:
图3:状态为22的元胞点燃周围森林的可能性向量图
然后计算当前森林元胞被点燃的可能性是它的所有相邻元胞点燃它的概率和。若超过了设定的概率水平,则可用随机数的产生方法来确定当前元胞是否被点燃。
至此,一个较为精确的林火蔓延的动态模型构建完成。这样将模型集成到GIS系统中,在空间数据库、遥感影象、数字高程模型等数据的支持下,提取合理的模型参数,对森林不同地点、不同天气条件下,一旦着火后的林火蔓延过程进行动态模拟和预测,对森林防火、火灾救险工作有很大的应用价值。
总结和体会
       1.空间分析( Spacial Analysis)是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。
       2.空间分析是地理信息系统的主要特征,也是评价一个地理信息系统功能的主要指标之一,是地理信息系统区别于一般信息系统的主要功能特征。
    3.目前GIS的空间分析功能偏弱严重地阻碍了GIS作为空间数据分析和研究工具的使用。空间分析的应用关键在于如何建立空间分析模型。空间分析建模,又称为 “地图建模”( Cartographic Modeling),它是通过组合空间分析命令操作以回答有关空间现象问题的过程。
    4.本文列举了两个空间分析的应用实例,一个是关于城市公园的分布,另一个是关于森林火灾的模拟。通过这两个例子,不仅获得了对空间分析这个概念的感性理解,同时也更加深刻地体会到空间分析在GIS中的重要地位和作用,此外也对空间分析建摸有了一个初步的认识。
  • 2
    点赞
  • 5
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值