4719: [Noip2016]天天爱跑步
Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 969 Solved: 317
[Submit][Status][Discuss]
Description
小c同学认为跑步非常有趣,于是决定制作一款叫做《天天爱跑步》的游戏。?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任务。这个游戏的地图可以看作一一棵包含 N个结点和N-1 条边的树, 每条边连接两个结点,且任意两个结点存在一条路径互相可达。树上结点编号为从1到N的连续正整数。现在有个玩家,第个玩家的起点为Si ,终点为Ti 。每天打卡任务开始时,所有玩家在第0秒同时从自己的起点出发, 以每秒跑一条边的速度,不间断地沿着最短路径向着自己的终点跑去, 跑到终点后该玩家就算完成了打卡任务。 (由于地图是一棵树, 所以每个人的路径是唯一的)小C想知道游戏的活跃度, 所以在每个结点上都放置了一个观察员。 在结点的观察员会选择在第Wj秒观察玩家, 一个玩家能被这个观察员观察到当且仅当该玩家在第Wj秒也理到达了结点J 。 小C想知道每个观察员会观察到多少人?注意: 我们认为一个玩家到达自己的终点后该玩家就会结束游戏, 他不能等待一 段时间后再被观察员观察到。 即对于把结点J作为终点的玩家: 若他在第Wj秒重到达终点,则在结点J的观察员不能观察到该玩家;若他正好在第Wj秒到达终点,则在结点的观察员可以观察到这个玩家。
Input
第一行有两个整数N和M 。其中N代表树的结点数量, 同时也是观察员的数量, M代表玩家的数量。
接下来n-1 行每行两个整数U和V ,表示结点U 到结点V 有一条边。
接下来一行N 个整数,其中第个整数为Wj , 表示结点出现观察员的时间。
接下来 M行,每行两个整数Si和Ti,表示一个玩家的起点和终点。
对于所有的数据,保证 。
1<=Si,Ti<=N,0<=Wj<=N
Output
输出1行N 个整数,第个整数表示结点的观察员可以观察到多少人。
Sample Input
6 3
2 3
1 2
1 4
4 5
4 6
0 2 5 1 2 3
1 5
1 3
2 6
2 3
1 2
1 4
4 5
4 6
0 2 5 1 2 3
1 5
1 3
2 6
Sample Output
2 0 0 1 1 1
HINT
对于1号点,W1=0,故只有起点为1号点的玩家才会被观察到,所以玩家1和玩家2被观察到,共2人被观察到。
对于2号点,没有玩家在第2秒时在此结点,共0人被观察到。
对于3号点,没有玩家在第5秒时在此结点,共0人被观察到。
对于4号点,玩家1被观察到,共1人被观察到。
对于5号点,玩家1被观察到,共1人被观察到。
对于6号点,玩家3被观察到,共1人被观察到
终于A了这道题 泪
想起去年那时 泪
终于了却心结,此时心中无比舒畅
括弧:当然不算爆炸OJ判的4法PE。。。
这篇题解肯定比我写出来好,就转一下吧
哦对了,话说学会了tarjan求lca
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<set>
#include<map>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
const int N=300100;
int ecnt,last[N],lcacnt,lastlca[N];
struct EDGE{int to,nt;}e[N<<1],lcae[N<<1];
inline void add(int u,int v)
{e[++ecnt]=(EDGE){v,last[u]};last[u]=ecnt;}
inline void addlca(int u,int v)
{lcae[++lcacnt]=(EDGE){v,lastlca[u]};lastlca[u]=lcacnt;}
struct question{int u,v;}q[N];
bool vis[N];
int n,m,lca[N],fa[N],len[N],d[N],w[N];
inline int getfa(int x)
{
int t=x;
while(t^fa[t])t=fa[t];
while(x^fa[x])x=fa[x],fa[x]=t;
return x;
}
void tarjanlca(int u,int pre)
{
register int i,to;
vis[u]=1;fa[u]=u;
for(i=lastlca[u];i;i=lcae[i].nt)
{
to=lcae[i].to;
if(q[to].u==u&&vis[q[to].v])lca[to]=getfa(q[to].v);
else if(q[to].v==u&&vis[q[to].u])lca[to]=getfa(q[to].u);
}
for(i=last[u];i;i=e[i].nt)
{
if(e[i].to==pre)continue;
d[e[i].to]=d[u]+1;tarjanlca(e[i].to,u);fa[e[i].to]=u;
}
}
int buc[N<<1],num[N],ans[N],maxd;
vector<int>sub1[N],sub2[N];
void dfs1(int u,int pre)
{
register int i,cur,aim=d[u]+w[u];
if(aim<=maxd)cur=buc[aim];
for(i=last[u];i;i=e[i].nt)
{
if(e[i].to==pre)continue;
dfs1(e[i].to,u);
}
buc[d[u]]+=num[u];
if(aim<=maxd)ans[u]=buc[aim]-cur;
for(i=0,cur=sub1[u].size();i<cur;++i)buc[d[sub1[u][i]]]--;
}
void dfs2(int u,int pre)
{
register int i,cur,tmp,aim=d[u]-w[u]+N;
tmp=buc[aim];
for(i=last[u];i;i=e[i].nt)
{
if(e[i].to==pre)continue;
dfs2(e[i].to,u);
}
for(i=0,cur=sub2[u].size();i<cur;++i)buc[sub2[u][i]]++;
ans[u]+=buc[aim]-tmp;
for(i=0,cur=sub1[u].size();i<cur;++i)buc[sub1[u][i]]--;
}
int main()
{
n=read();m=read();
register int i,u,v;
for(i=1;i<n;++i){u=read();v=read();add(u,v);add(v,u);}
for(i=1;i<=n;++i)w[i]=read();
for(i=1;i<=m;++i){q[i].u=read();q[i].v=read();num[q[i].u]++;addlca(q[i].u,i);addlca(q[i].v,i);}
tarjanlca(1,0);
for(i=1;i<=m;++i){len[i]=d[q[i].u]+d[q[i].v]-(d[lca[i]]<<1);sub1[lca[i]].push_back(q[i].u);}
for(i=1;i<=n;++i)maxd=max(maxd,d[i]);
dfs1(1,0);
memset(buc,0,sizeof(buc));
for(i=1;i<=n;++i)sub1[i].clear();
for(i=1;i<=m;++i)
{
sub1[lca[i]].push_back(d[q[i].v]-len[i]+N);
sub2[q[i].v].push_back(d[q[i].v]-len[i]+N);
}
dfs2(1,0);
for(i=1;i<=m;++i)if(d[lca[i]]+w[lca[i]]==d[q[i].u])ans[lca[i]]--;
for(i=1;i<n;++i)print(ans[i]),putchar(' ');print(ans[n]);
return 0;
}