深度学习——归一化 假设一个函数:健康=3✖️身高+2✖️体重(身高:m,体重:斤)现在给出一个例子:1.6m130斤的人1,1.9m129的人2按照函数计算,你会发现他们的健康值差不多,故需要进行统一数量级,排除单位的干扰。最小-最大归一化将原始数据缩放到一个指定的最小和最大值(通常是0到1或-1到1)之间。公式如下:x——当出现3m的人,按照此公式会一直保留异常值的影响。
Resnet.Module代码解读/带看 了解了模型整体结构的实现,我们可能会有很多疑问,参数在哪儿?layer是啥?咋实现?尺寸怎么变换的?等等一系列问题。让我们一步一步来,假设我们在写代码,下一步应该就是去思考定义layer层了这是来自某站的一位博主手撕resnet的代码:(【ResNet残差神经网络硬核讲解(带你手撸ResNet代码),从模型构建到训练、推理、可视化-哔哩哔哩】ResNet残差神经网络硬核讲解(带你手撸ResNet代码),从模型构建到训练、推理、可视化_哔哩哔哩_bilibili讲得很好,可以搭配食用。