利用Python和R将NetCDF文件转存为Tiff文件
1、python
参考博客:
https://www.cnblogs.com/shoufengwei/p/9068379.html
https://blog.csdn.net/EWBA_GIS_RS_ER/article/details/84076201
http://www.clarmy.net/2018/11/01/python%E8%AF%BB%E5%8F%96nc%E6%96%87%E4%BB%B6%E7%9A%84%E5%85%A5%E9%97%A8%E7%BA%A7%E6%93%8D%E4%BD%9C/
# -*- coding: utf-8 -*-
# 模块导入
import numpy as np
import netCDF4 as nc
from osgeo import gdal,osr,ogr
import os
import glob
# 单个nc数据ndvi数据读取为多个tif文件,并将ndvi值化为-1-1之间
def NC_to_tiffs(data,Output_folder):
nc_data_obj = nc.Dataset(data)
Lon = nc_data_obj.variables['lon'][:]
Lat = nc_data_obj.variables['lat'][:]
ndvi_arr = np.asarray(nc_data_obj.variables['ndvi']) #将ndvi数据读取为数组
ndvi_arr_float = ndvi_arr.astype(float)/10000 #将int类型改为float类型,并化为-1 - 1之间
#影像的左上角和右下角坐标
LonMin,LatMax,LonMax,LatMin = [Lon.min(),Lat.max(),Lon.max(),Lat.min()]
#分辨率计算
N_Lat = len(Lat)
N_Lon = len(Lon)
Lon_Res = (LonMax - LonMin) /(float(N_Lon)-1)
Lat_Res = (LatMax - LatMin) / (float(N_Lat)-1)
for i in range(len(ndvi_arr[:])):
#创建.tif文件
driver = gdal.GetDriverByName('GTiff')
out_tif_name = Output_folder + '\\'+ data.split('\\')[-1].split('.')[0] + '_' + str(i+1) + '.tif'
out_tif = driver.Create(out_tif_name,N_Lon,N_Lat,1,gdal.GDT_Float32)
# 设置影像的显示范围
#-Lat_Res一定要是-的
geotransform = (LonMin,Lon_Res, 0, LatMax, 0, -Lat_Res)
out_tif.SetGeoTransform(geotransform)
#获取地理坐标系统信息,用于选取需要的地理坐标系统
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326) # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]
out_tif.SetProjection(srs.ExportToWkt()) # 给新建图层赋予投影信息
#数据写出
out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i]) # 将数据写入内存,此时没有写入硬盘
out_tif.FlushCache() # 将数据写入硬盘
out_tif = None # 注意必须关闭tif文件
def main():
Input_folder = 'F:\\data___python_test\\nc_to_tif\\nc'
Output_folder = 'F:\\data___python_test\\nc_to_tif\\tif_result'
# 读取所有nc数据
data_list = glob.glob(Input_folder + '\\*.nc4')
for i in range(len(data_list)):
data = data_list[i]
NC_to_tiffs(data,Output_folder)
print data + '-----转tif成功'
print'----转换结束----'
main()
原博主联系方式:
QQ:1932419976
E-mail:1932419976@qq.com
本文版权归作者所有,欢迎转载、交流,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,如果觉得本文对您有益,欢迎点赞、探讨。
————————————————
版权声明:本文为CSDN博主「~Hello」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_35737895/article/details/100060390
2、R语言
以全球降水量数据集“cru_ts4.05.2011.2020.pre.dat.nc”为例。
#打开nc文件,查看nc文件数据结构
library(ncdf4)
setwd("E:/CRU")#路径设置
ncdata <- nc_open("cru_ts4.05.2011.2020.pre.dat.nc")
str(ncdata)
library(raster)
tmpbr<-brick("cru_ts4.05.2011.2020.pre.dat.nc",varname="pre")
#nc转多波段TIFF
#writeRaster(tmbpr,"world.tif",format="Gtiff",overwrite=TURE)
#nc转单波段tiff
writeRaster(tmpbr,filename=tmpbr@data@names,bylayer=T,format="GTiff",overwrite=TRUE)
参考链接:
版权声明:本文为CSDN博主「小弱鸡也要长大成大树」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44913294/article/details/111257592