PTA L2-011 玩转二叉树 (25 分)

该博客介绍了如何根据给定的二叉树中序和前序遍历序列,首先完成树的镜面反转操作,再输出反转后的层次遍历序列。通过解析输入的节点数量和两个遍历序列,利用前序遍历构造二叉树,并用队列实现层次遍历,同时交换非叶节点的左右子节点。示例中展示了具体的输入输出情况和解题思路。
摘要由CSDN通过智能技术生成

L2-011 玩转二叉树 (25 分)
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。

输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。

输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2
给的中序和前序,可以去构造出来这棵二叉树,可以根据前序去匹配中序的,然后一个queue进行层次遍历,交换左右还是比较简单的

#include<bits/stdc++.h>
using namespace std;
int mid[1000],in[1000],Left[1000],Right[1000];
int n;
int build(int L1,int R1,int L2,int R2)
{
    if(L1>R1)return 0;
    int root=in[L2];
    int pos=L1;
    while(mid[pos]!=root)pos++;
    int cnt=pos-L1;
    Left[root]=build(L1,pos-1,L2+1,L2+cnt);
    Right[root]=build(pos+1,R1,L2+cnt+1,R2);
    return root;
}
void level()
{
 
### 回答1: 题目描述 本题要求给定二叉树的4种遍历结果,给出该树的结构。 输入格式: 输入给出4行,每行给出正整数N (≤30),随后是由空格隔的N个整数。其中第1行给出序遍历结果,第2行给出中序遍历结果,第3行给出后序遍历结果,第4行给出层序遍历结果。数字间以1个空格隔,行末不得有多余空格。 输出格式: 如果输入的4种遍历结果不合法,则在一行中输出"No",并结束程序。 如果输入的4种遍历结果合法,则在一行中输出该树的根结点的编号。如果结果不唯一,则输出其中最小的编号。 输入样例1: 7 2 3 1 5 6 7 4 2 1 3 7 5 6 4 2 7 6 5 4 3 1 1 2 4 3 5 7 6 输出样例1: 1 输入样例2: 7 2 3 1 5 6 7 4 2 3 1 7 5 6 4 2 7 6 5 4 3 1 1 2 4 3 5 7 6 输出样例2: No 题目析 根据二叉树遍历序列可以构造出一棵二叉树,而给出的是四种遍历方式,因此可以将四种遍历结果输入,构造出一棵二叉树,然后在二叉树中找出根结点即可。 二叉树的构造可以使用递归函数实现,由于需要用到中序遍历,因此可以根据中序遍历结果找到根结点,然后递归地处理左右子树。找到根结点后,可以利用序遍历序遍历的性质,别处理左右子树,得到左右子树的根结点。 时间复杂度 本题需要对四种遍历结果进行遍历,时间复杂度为 O(n),其中 n 是二叉树的结点数。 ### 回答2: l2-011 玩转二叉树是一道二叉树的题目,需要我们熟练掌握二叉树的基本概念常用操作,才能够解决问题。对于这道题目,主要是考察二叉树遍历方式二叉树的特性。 首,我们需要了解二叉树遍历方式。二叉树遍历方式有前序遍历、中序遍历序遍历三种。其中前序遍历是指输出根节点,再输出左子树,最后输出右子树。中序遍历是指输出左子树,再输出根节点,最后输出右子树。后序遍历是指输出左子树,再输出右子树,最后输出根节点。同时,还有层次遍历,它是按照从上到下,从左到右的顺序进行遍历。在解决这道题目时,需要使用到前序遍历序遍历。 其次,我们需要了解二叉树的特性。二叉树是一种树形结构,每个节点最多有两个孩子节点。在解决这道题目时,需要用到的是序遍历序遍历,以及二叉树的性质之一:对于一个节点,它的左子树中的所有节点小于它的值,它的右子树中的所有节点大于它的值。 通过以上的了解,我们就可以开始解决这道题目。首,我们需要输入序遍历序遍历,根据序遍历序遍历的特性,可以得出根节点以及它的左子树右子树。接下来,我们需要递归的进行操作,根据左子树右子树的特性,确定每个子树的根节点它的左右子树。最后,就可以得到一棵完整的二叉树。 总之,这道题目主要考察对于二叉树的掌握程度,需要熟练掌握二叉树遍历方式特性。同时,需要学会运用递归思想,将大问题拆成小问题,步骤解决问题。 ### 回答3: 题目描述 本题要求对给定二叉树建立线索,并对指定结点进行遍历操作。 解题思路 本题思路较多,但有一个很关键的点,就是如何建立线索。以下简述建立线索的思路: - 对于有左儿子的节点,将其右空指针指向其后继节点,即中序遍历下的后继节点; - 对于有右儿子的节点,将其左空指针指向其前驱节点,即中序遍历下的前驱节点; - 对于没有左右儿子的节点,不做任何处理。 在线索化后,就可以使用线索树进行中序遍历,省去了递归的空间开销。具体中序遍历思路如下: - 对根节点进行转向,即将其左空指针指向前驱节点,将其右空指针指向后继节点; - 对于每个节点,如果其左指针为空,就输出该节点并继续遍历其右孩子;否则继续转向到其左孩子节点继续遍历。 解题步骤 1.读入节点数根节点编号,建立空的二叉树2.读入节点数据父节点编号,建立二叉树。 3.进行二叉树线索化,建立线索树,省去递归空间开销。 4.根据输入要求,使用线索化的中序遍历进行操作。 5.遍历完毕,程序结束。 代码实现 本题要求使用++data存储节点数据,而不是输入的编号,所以读入节点前需要将其编号存储在map中,建立编号数据的映射。以下是AC代码,加了少量注释以方便理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值