【BZOJ1221】[HNOI2001] 软件开发【最小费用最大流】

本文介绍了一个具体的网络流问题实例,并通过C++代码详细展示了如何利用SPFA算法进行求解。该问题涉及节点间的流量传递及成本计算,适用于理解网络流算法原理及应用。

【题目链接】

听说是网络流24题。。

【rausen的题解】

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 2005, maxm = 10005, maxq = 10000, inf = 0x3f3f3f3f;

int n, A, B, F, FA, FB, head[maxn], cnt, bg, ed, depth[maxn], q[maxq], way[maxn];
bool vis[maxn];

struct _edge {
	int v, w, c, next;
} g[maxm << 1];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void add(int u, int v, int w, int c) {
	g[cnt] = (_edge){v, w, c, head[u]};
	head[u] = cnt++;
}

inline void insert(int u, int v, int w, int c) {
	add(u, v, w, c); add(v, u, 0, -c);
}

inline bool spfa() {
	for(int i = 0; i <= ed; i++) depth[i] = inf;
	int h = 0, t = 0, u, i; depth[q[t++] = bg] = 0;
	while(h != t) for(i = head[u = q[h++]], vis[u] = 0; ~i; i = g[i].next) if(g[i].w && depth[g[i].v] > depth[u] + g[i].c) {
		depth[g[i].v] = depth[u] + g[i].c;
		way[g[i].v] = i;
		if(!vis[g[i].v]) vis[q[t++] = g[i].v] = 1;
	}
	return depth[ed] != inf;
}

inline int back() {
	int res = 0, flow = inf;
	for(int u = ed; u != bg; u = g[way[u] ^ 1].v) flow = min(flow, g[way[u]].w);
	for(int u = ed; u != bg; u = g[way[u] ^ 1].v) g[way[u]].w -= flow, g[way[u] ^ 1].w += flow, res += g[way[u]].c * flow;
	return res;
}

int main() {
	n = iread(); A = iread(); B = iread(); F = iread(); FA = iread(); FB = iread();
	bg = 0; ed = n + n + 1;
	for(int i = 0; i <= ed; i++) head[i] = -1; cnt = 0;

	for(int i = 1; i <= n; i++) {
		int x = iread();
		insert(bg, i, x, 0);
		insert(n + i, ed, x, 0);
		insert(bg, n + i, inf, F);
		if(i + A + 1 <= n) insert(i, n + i + A + 1, inf, FA);
		if(i + B + 1 <= n) insert(i, n + i + B + 1, inf, FB);
		if(i != n) insert(i, i + 1, inf, 0);
	}
	
	int ans = 0;
	while(spfa()) ans += back();

	printf("%d\n", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值