八大排序算法—源代码(c语言)

🍁前言

本篇博客有两大部分:

附上八个排序的详解版链接,方便大家跳转,查看各排序详细的算法思路和实现过程;

八大排序的源码,复制后可直接进行排序(升序),为了汇总知识点和方便日后查阅。

目录

二、 源代码

1. 插入排序

2. 希尔排序

3. 选择排序

4. 堆排序

5. 冒泡排序

6.  快速排序

6.1 hoare 版本

6.2 挖坑法

6.3 前后指针法

6.4 非递归版本

7. 归并排序

7.1 递归版本

7.2 非递归版本

8. 计数排序


一、 排序详解链接

下面是各种排序的详解版,大家可以直接链接跳转。

源码在下半部分,可以配合目录进行浏览。

插入排序希尔排序选择排序堆排序

冒泡排序快速排序归并排序计数排序

二、 源代码

1. 插入排序

插入排序算法实现:

  1. 设置初始值end0,即从下标为0处开始,假设0处数据是已经排好序;用temp记录下end+1处的数据,进入循环。
  2. 在循环中,如果end处的值大于temp中的值,则将end+1处覆盖,即arr[end+1]=end;再将end -- ,使end向前移动。
  3. 如果end处的值 <= temp的值,则跳出循环,无需进行覆盖;直接break跳出循环。
  4. 跳出循环后,将temp的值赋给end+1,则是将值插入到数组中
  5. 设置循环条件为 end >= 0,则 end 减到 -1 时就会跳出循环,表示着遍历完了整个数组
//插入排序
void InsertSort(int* arr, int n)
{
	for (int i = 1; i < n; i++)
	{
		int end = i;
		int temp = arr[end];
		while (end >= 1)
		{
			if (temp < arr[end - 1])
			{
				arr[end] = arr[end - 1];
			}
			else
			{
				break;
			}
			end--;
		}
		arr[end] = temp;
	}
}

2. 希尔排序

希尔排序是插入排序的一种,它是针对直接插入排序算法的改进。

希尔排序又称缩小增量排序,因 DL.Shell 于 1959 年提出而得名。

它通过比较相距一定间隔的元素来进行,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止。

//希尔排序
void ShellSort(int* arr, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		for (int i = 0; i < n - gap; ++i)
		{
			int end = i;
			int temp = arr[end + gap];
			while (end >= 0)
			{
				if (temp < arr[end])
				{
					arr[end + gap] = arr[end];
				}
				else
				{
					break;
				}
				end -= gap;
			}
			arr[end + gap] = temp;
		}
	}
}

3. 选择排序

选择排序算法原理如下:

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。

  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

  3. 重复第二步,直到所有元素均排序完毕。

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//选择排序
void SelectSort(int* a, int n)
{
	for (int i = 0; i < n-1; i++)
	{
		int temp = i;
		for (int j = i+1; j < n; j++)
		{
			if (a[j] < a[temp])
			{
				temp = j;
			}
		}
		swap(&a[temp], &a[i]);
	}
}

4. 堆排序

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//堆排序
void AdjustDown(int* a, int size, int parent)
{
	int child = parent * 2 + 1;
	while (child < size)
	{
		if (child + 1 < size && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
			break;
	}
}
void HeapSort(int* a, int n)
{

	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

5. 冒泡排序

冒泡排序算法原理如下: 

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。 

  2. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素会是最大的数。 

  3. 针对所有的元素重复以上的步骤,除了最后一个。 

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//冒泡排序
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int exchange = 1;
		for (int j = 0; j < n - 1 - i; j++)
		{
			if ( a[j + 1]< a[j])
			{
				swap(&a[j], &a[j + 1]);
				exchange = 0;
			}
		}
		if (exchange)
			break;
	}
}

6.  快速排序

快速排序原理如下:

  1. 从数列中挑出一个元素,称为 "基准"(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

三个版本都可以直接进行排序,并附上了三数取中的优化方式。

本博客没有快排和归并的非递归写法噢。

6.1 hoare 版本

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//三数取中
int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
			return end;
		else if (a[mid] > a[begin])
			return begin;
		else
			return mid;
	}
	else
	{
		if (a[end] < a[mid])
			return end;
		else if (a[end] < a[begin])
			return begin;
		else
			return mid;
	}
}
//hoare 的方法
void QuickSort_hoare(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int left = begin;
	int right = end;
	int keyi = left;
	int mid = GetMid(a, begin, end);
	swap(&a[mid], &a[keyi]);
	while (left < right)
	{
		while (left < right && a[keyi] <= a[right])
		{
			right--;
		}
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		swap(&a[left], &a[right]);

	}
	swap(&(a[keyi]), &(a[right]));
	keyi = right;
	QuickSort_hoare(a, begin, keyi - 1);
	QuickSort_hoare(a, keyi + 1, end);
}

6.2 挖坑法

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//三数取中
int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
			return end;
		else if (a[mid] > a[begin])
			return begin;
		else
			return mid;
	}
	else
	{
		if (a[end] < a[mid])
			return end;
		else if (a[end] < a[begin])
			return begin;
		else
			return mid;
	}
}
//挖坑法
void QuickSort_dig(int* a, int begin, int end)
{
	if (begin >= end)
		return;
	int key = a[begin];
	int piti = begin;
	int left = begin;
	int right = end;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[piti] = a[right];
		piti = right;
		while (left < right && a[left] <= key)
		{
			left++;
		}
		a[piti] = a[left];
		piti = left;
	}
	a[piti] = key;
	QuickSort_dig(a, begin, piti - 1);
	QuickSort_dig(a, piti + 1, end);
}

6.3 前后指针法

void swap(int* r1, int* r2)
{
	int temp = *r1;
	*r1 = *r2;
	*r2 = temp;
}
//三数取中
int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
			return end;
		else if (a[mid] > a[begin])
			return begin;
		else
			return mid;
	}
	else
	{
		if (a[end] < a[mid])
			return end;
		else if (a[end] < a[begin])
			return begin;
		else
			return mid;
	}
}
//前后指针法
void QuickSort_Pointer1(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int prev = begin;
	int cur = begin + 1;
	int keyi = begin;
	int mid = GetMid(a, begin, end);
	swap(&a[mid], &a[keyi]);
	while (cur <= end)
	{
		if (a[cur] < a[keyi] && ((++prev) != cur))
		{
			swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	swap(&a[prev], &a[keyi]);
	keyi = prev;
	QuickSort_Pointer1(a, begin, keyi - 1);
	QuickSort_Pointer1(a, keyi + 1, end);
}

6.4 非递归版本

需要借助栈来实现,感兴趣可以点击链接去浏览。


int PartSort3(int * a, int begin, int end)
{
	int prev = begin;
	int cur = begin + 1;
	int keyi = begin;
	int mid = GetMid(a, begin, end);
	swap(&a[mid], &a[keyi]);
	while (cur <= end)
	{
		if (a[cur] < a[keyi] && ((++prev) != cur))
		{
			swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	swap(&a[prev], &a[keyi]);
	return prev;
}
void QuickSortNonR(int* a, int begin, int end)
{
	ST st;
	StackInit(&st);
	StackPush(&st, end);
	StackPush(&st, begin);
	while (!StackEmpty(&st))
	{
		int left = StackTop(&st);
		StackPop(&st);
		int right = StackTop(&st);
		StackPop(&st);
		int keyi = PartSort3(a, left, right);
		if (keyi + 1 < right)
		{
			StackPush(&st, right);
			StackPush(&st, keyi + 1);
		}
		if (left < keyi - 1)
		{
			StackPush(&st, keyi - 1);
			StackPush(&st, left);
		}
	}
	StackDestory(&st);
}

7. 归并排序

归并排序算法原理如下:

  1. 把数组从中间划分成两个子数组
  2. 一直递归地把子数组划分成更小的数组,直到子数组里面只有一个元素
  3. 依次按照递归的返回顺序,不断合并排好序的子数组,直到最后把整个数组顺序排好。

7.1 递归版本

//归并排序
void _MergeSort(int* a, int begin, int end, int* temp)
{
	if (begin >= end)
		return;
	int mid = (begin + end) / 2;
	_MergeSort(a, begin, mid, temp);
	_MergeSort(a, mid + 1, end, temp);
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin1;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			temp[i++] = a[begin1++];
		}
		else
		{
			temp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		temp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		temp[i++] = a[begin2++];
	}
	memcpy(a + begin, temp + begin, (end - begin + 1) * sizeof(int));
}

void MergeSort(int* a, int n)
{
	int* temp = (int*)malloc(sizeof(int) * n);
	_MergeSort(a, 0, n - 1, temp);
	free(temp);
}

7.2 非递归版本

修改边界方法一:

void MergeSortNonR1(int* a, int n)
{
	int* temp = (int*)malloc(sizeof(int) * n);
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;

			if (end1 >= n)
			{
				end1 = n - 1;
				begin2 = n;
				end2 = n - 1;
			}
			else if (begin2 >= n)
			{
				begin2 = n;
				end2 = n - 1;
			}
			else if (end2 >= n)
			{
				end2 = n - 1;
			}
			int j = begin1;
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					temp[j++] = a[begin1++];
				}
				else
				{
					temp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				temp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				temp[j++] = a[begin2++];
			}
		}
		memcpy(a, temp, n * sizeof(int));
		gap *= 2;
	}
}

修改边界方法二:

void MergeSortNonR2(int* a, int n)
{
	int* temp = (int*)malloc(sizeof(int) * n);
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i += 2 * gap)
		{

			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			if (end1 >= n || begin2 >= n)
			{
				break;
			}
			else if (end2 >= n)
			{
				end2 = n - 1;
			}

			int m = end2 - begin1 + 1;
			int j = begin1;
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					temp[j++] = a[begin1++];
				}
				else
				{
					temp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				temp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				temp[j++] = a[begin2++];
			}
			memcpy(a + i, temp + i, m * sizeof(int));

		}
		gap *= 2;
	}
	free(temp);
}

8. 计数排序

计数排序算法原理如下:

  1. 计算出当前数据集合的范围区间range,即最大值 - 最小值。
  2. 开辟range大小的计数表(使用calloc),记录每个数据出现的次数。
  3. 统计每个数出现的次数,放到减去最小值后其在计数表中的相对位置
  4. 回写数据。遍历计数表,如果表中位置不为零,则直接回写到元素组中,其值为下标 + 最小值,则可将相对位置转回为绝对位置。
void CountSort(int* a, int n)
{
	int max = a[0];
	int min = a[0];
	for (int i = 1; i < n; i++)
	{
		if (max < a[i])
			max = a[i];
		if (min > a[i])
			min = a[i];
	}
	int range = max - min+1;
	int* temp = (int*)calloc(range, sizeof(int));
	for (int i = 0; i < n; i++)
	{
		temp[a[i] - min]++;
	}
	int j = 0;
	for (int i=0;i<range;i++)
	{
		while (temp[i]--)
		{
			a[j++] = i+min;
		}
	}
}
阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
第一部分 基础篇 001 第一个C程序 002 运行多个源文件 003 求整数之积 004 比较实数大小 005 字符的输出 006 显示变量所占字节数 007 自增/自减运算 008 数列求和 009 乘法口诀表 010 猜数字游戏 011 模拟ATM(自动柜员机)界面 012 用一维数组统计学生成绩 013 用二维数组实现矩阵转置 014 求解二维数组的最大/最小元素 015 利用数组求前n个质数 016 编制万年历 017 对数组元素排序 018 任意进制数的转换 019 判断回文数 020 求数组前n元素之和 021 求解钢材切割的最佳订单 022 通过指针比较整数大小 023 指向数组的指针 024 寻找指定元素的指针 025 寻找相同元素的指针 026 阿拉伯数字转换为罗马数字 027 字符替换 028 从键盘读入实数 029 字符行排版 030 字符排列 031 判断字符串是否回文 032 通讯录的输入输出 033 扑克牌的结构表示 034 用“结构”统计学生成绩 035 报数游戏 036 模拟社会关系 037 统计文件的字符数 038 同时显示两个文件的内容 039 简单的文本编辑器 040 文件的字数统计程序 041 学生成绩管理程序 第二部分 数据结构篇 042 插入排序 043 希尔排序 044 冒泡排序 045 快速排序 046 选择排序 047 堆排序 048 归并排序 049 基数排序 050 二叉搜索树操作 051 二项式系数递归 052 背包问题 053 顺序表插入和删除 054 链表操作(1) 055 链表操作(2) 056 单链表就地逆置 057 运动会分数统计 058 双链表 059 约瑟夫环 060 记录个人资料 061 二叉树遍利 062 浮点数转换为字符串 063 汉诺塔问题 064 哈夫曼编码 065 图的深度优先遍利 066 图的广度优先遍利 067 求解最优交通路径 068 八皇后问题 069 骑士巡游 070 用栈设置密码 071 魔王语言翻译 072 火车车厢重排 073 队列实例 074 K阶斐波那契序列 第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的数 083 验证歌德巴赫猜想 084 素数幻方 085 百钱百鸡问题 086 爱因斯坦的数学题 087 三色球问题 088 马克思手稿中的数学题 089 配对新郎和新娘 090 约瑟夫问题 091 邮票组合 092 分糖果 093 波瓦松的分酒趣题 094 求π的近似值 095 奇数平方的有趣性质 096 角谷猜想 097 四方定理 098 卡布列克常数 099 尼科彻斯定理 100 扑克牌自动发牌 101 常胜将军 102 搬山游戏 103 兔子产子(菲波那契数列) 104 数字移动 105 多项式乘法 106 产生随机数 107 堆栈四则运算 108 递归整数四则运算 109 复平面作图 110 绘制彩色抛物线 111 绘制正态分布曲线 112 求解非线性方程 113 实矩阵乘法运算 114 求解线性方程 115 n阶方阵求逆 116 复矩阵乘法 117 求定积分 118 求满足特异条件的数列 119 超长正整数的加法 第四部分 图形篇 120 绘制直线 121 绘制圆 122 绘制圆弧 123 绘制椭圆 124 设置背景色和前景色 125 设置线条类型 126 设置填充类型和填充颜色 127 图形文本的输出 128 金刚石图案 129 飘带图案 130 圆环图案 131 肾形图案 132 心脏形图案 133 渔网图案 134 沙丘图案 135 设置图形方式下的文本类型 136 绘制正多边形 137 正六边形螺旋图案 138 正方形螺旋拼块图案 139 图形法绘制圆 140 递归法绘制三角形图案 141 图形法绘制椭圆 142 抛物样条曲线 143 Mandel

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Brant_zero2022

素材免费分享不求打赏,只求关注

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值