数字特征
平均数、众数、中位数、方差、标准差、百分位数
1.方差
S 2 = [ ( x 1 − x ˉ ) 2 + ( x 2 − x ˉ ) 2 + . . . + ( x n − x ˉ ) 2 ] n = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 S^2=\frac{[(x_1-\bar{x})^2+(x_2-\bar{x})^2+...+(x_n-\bar{x})^2]}{n}\\ =\frac{1}{n}\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2 S2=n[(x1−xˉ)2+(x2−xˉ)2+...+(xn−xˉ)2]=n1i=1∑n(xi−xˉ)2
2.标准差
即:(方差的算术平方根,表示数据的离散性、稳定性)
S
2
\sqrt{S^2}
S2
3、频率直方图中的众数
最高的那组数据,组距的中点,就是众数。

4、百分位数
一组数据的,百分位数的确定方法

例如:

如果,给我们的是频数统计表,我们的计算方法如下:

5、求和运算符
∑
i
=
1
n
,读作西格玛求和运算符
\displaystyle\sum_{i=1}^n,读作西格玛求和运算符
i=1∑n,读作西格玛求和运算符
1中的方差求和,就是一个例子
还有,带有频数的求和表示方法
举例说明:
一组数:1、1、1、2、2、3、5、9
这组数的平均数:
x
ˉ
=
3
\bar{x}=3
xˉ=3
x
1
=
1
,
出现了
3
次,所以,
f
1
=
3
x
2
=
2
,
出现了
2
次,所以,
f
2
=
2
x
3
=
3
,
出现了
1
次,所以,
f
3
=
1
.
.
.
x_1=1,出现了3次,所以,f_1=3\\ x_2=2,出现了2次,所以,f_2=2\\ x_3=3,出现了1次,所以,f_3=1\\ ...
x1=1,出现了3次,所以,f1=3x2=2,出现了2次,所以,f2=2x3=3,出现了1次,所以,f3=1...
西格玛求和运算符,表示方差的写法如下:
S
2
=
1
n
∑
i
=
1
k
f
i
(
x
i
−
x
ˉ
)
2
S^2=\frac{1}{n}\displaystyle\sum_{i=1}^kf_i(x_i-\bar{x})^2
S2=n1i=1∑kfi(xi−xˉ)2
其中,
f
1
+
f
2
+
.
.
+
f
k
=
n
f_1+f_2+..+f_k=n
f1+f2+..+fk=n
942

被折叠的 条评论
为什么被折叠?



