1.1ES简介
ES是使用java 语言并且基于lucence编写的搜索引擎框架,他提供了分布式的全文搜索功能,提供了一个统一的基于restful风格的web 接口。
lucence:一个搜索引擎底层
分布式:突出ES的横向扩展能力
全文检索:将一段词语进行分词,并将分出的词语统一的放在一个分词库中,再搜索时,根据关键字取分词库中检索,找到匹配的内容(倒排索引)。
restful风格的web 接口:只要发送一个http请求,并且根据请求方式的不同,携带参数的不同,执行相应的功能。
应用广泛:WIKI, github,Gold man
1.2ES的由来
回忆时光**
许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。 在寻找一个赚钱的工作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。
直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。 他发布了他的第一个开源项目 Compass。
后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突出, 他决定重写 Compass,把它变为一个独立的服务并取名 Elasticsearch。
第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors(目前736名 contributors )。 一家公司已经开始围绕 Elasticsearch 提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可用。
据说,Shay 的妻子还在等着她的食谱搜索引擎…
1.3ES和solr
1.solr 查询死数据,速度比es快。但是数据如果是改变的,solr查询速度会降低很多,ES的查询速度没有明显的改变
2.solr搭建集群 依赖ZK,ES本身就支持集群搭建
3.最开始solr 的社区很火爆,针对国内文档 少,ES出现后,国内社区火爆程度 上升,,ES的文档非常健全
4.ES对云计算和大数据支持很好
1.4倒排索引
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RBL926dA-1603875440201)(ES笔记.assets/image-20200727144457339.png)]
1.将存放的数据以一定的方式进行分词,并将分词的内容存放到一个单独的分词库中。
2.当用户取查询数据时,会将用户的查询关键字进行分词,然后去分词库中匹配内容,最终得到数据的id标识
3.根据id标识去存放数据的位置拉去指定数据
2 安装
2.1 elasticsearch 安装
http://hub.daocloud.io/ docker 镜像工厂地址
version: "3.1"
services:
elasticsearch:
image: daocloud.io/library/elasticsearch:6.5.4
restart: always
container_name: elasticsearch
ports:
- 9200:9200
- 9300:9300
kibana:
image: daocloud.io/library/kibana:6.5.4
restart: always
container_name: kibana
ports:
- 9200:9200
environment:
- elasticsearch_url=ip:9200
depends_on:
- elasticseatch
或者本地下载
2.2
https://github.com/medcl/elasticsearch-analysis-ik/archive/v6.8.10.zip
官方给的安装的办法
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
本地自己安装
https://github.com/medcl/elasticsearch-analysis-ik/archive/v6.8.10.zip
下载好后,
执行 mvn clean package 打包(注意pom文件中的es的版本,如果和自己的es的版本不一致,手动改下)
elasticsearch-analysis-ik-6.8.10\target\releases 中压缩包的内容copy到 elasticsearch-6.8.10\plugins\ik 下
kibana 主要用到 Dev Tools 和 Management
POST _analyze
{
"analyzer": "ik_max_word",
"text":"我是中国人"
}
3 es的基本操作
3.1 es的结构
3.1.1索引indx,分片,备份
ES服务中会创建多个索引
每个缩影默认被分成5个分片
每个分片存在至少一个备份分片
备份分片 不会帮助检索数据(当ES检索压力特别大的时候才,备份分片才会帮助检索数据)
备份的分片必须放在不同的服务器中
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UvN76rTa-1603875440204)(ES笔记.assets/image-20200727174836230.png)]
3.1.2 类型type
一个索引下可以创建多个类型
PS:版本不同,类型的创建也不同
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-88xRjz0V-1603875440206)(ES笔记.assets/image-20200727175427524.png)]
3.1.3 文档document
一个类型下可以有多个文档,这个文档就相当于mysql表中的多行数据
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xO5OpGtS-1603875440208)(ES笔记.assets/image-20200727175655572.png)]
3.1.4 属性field
一个文档中可以包含多个属性,类似于mysql 表中的一行数据有多个列
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sMFDsvkK-1603875440210)(ES笔记.assets/image-20200727180642583.png)]
3.2操作ES的restful语法
GET请求:
http://ip:port/index :查询索引信息
http://ip:port/index/type/doc_id :查询指定的文档信息
POST请求:
http://ip:port/index/type/_search: 查询文档,可以在请求体中添加json字符串来代表查询条件
http://ip:port/index/type/doc_id/_update: 修改文档,在请求体中添加json字符串来代表修改的信息
PUT请求:
http://ip:port/index : 创建一个索引,需要在请求体中指定索引的信息
http://ip:port/index/type/_mappings:代表创建索引时,指定索引文档存储属性的信息
DELETE 请求:
http://ip:port/index: 删除跑路
http://ip:port/index/type/doc_id: 删除指定的文档
3.3 索引的操作
3.3.1 创建一个索引
#创建一个索引
#number_of_shards 分片
#number_of_replicas 备份
PUT /person
{
"settings": {
"number_of_shards": 5,
"number_of_replicas": 1
}
}
3.3.2 查看一个索引
1.management
2.
#查看索引信息
GET /person
3.3.3 删除 索引
1.management
2.
#删除索引
DELETE /person
3.4 ES中Field可以指定的类型
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/mapping-types.html 官方 文档
字符串类型:
text: 一般用于全文检索,将当前field 进行分词
keyword:当前field 不会进行分词
数值类型:
long:
Intger:
short:
byte:
double:
float:
half_float: 精度比float 小一半
scaled_float:根据一个long 和scaled 来表达一个浮点型 long-345, -scaled 100 ->3.45
时间类型:
date类型,根据时间类型指定具体的格式
PUT my_index
{
"mappings": {
"_doc": {
"properties": {
"date": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
}
布尔类型:
boolean 类型,表达true 和false
二进制类型:
binary类型暂时支持Base64编码的字符串
范围类型:
integer_range:
float_range:
long_range:赋值时,无需指定具体的内容,只需存储一个范围即可,gte,lte,gt,lt,
double_range:
date_range:
ip_range:
PUT range_index
{
"settings": {
"number_of_shards": 2
},
"mappings": {
"_doc": {
"properties": {
"expected_attendees": {
"type": "integer_range"
},
"time_frame": {
"type": "date_range",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
}
PUT range_index/_doc/1?refresh
{
"expected_attendees" : {
"gte" : 10,
"lte" : 20
},
"time_frame" : {
"gte" : "2015-10-31 12:00:00",
"lte" : "2015-11-01"
}
}
经纬度类型:
geo_point:用来存储经纬度
IP类型:
ip:可以存储IPV4 和IPV6
其他的数据类型,参考官网
3.5 创建索引并指定数据结构
#创建索引,指定数据类型
PUT /book
{
"settings": {
#分片数
"number_of_shards": 5,
#备份数
"number_of_replicas": 1
},
#指定数据类型
"mappings": {
#类型 Type
"novel":{
#文档存储的field
"properties":{
#field属性名
"name":{
#类型
"type":"text",
#指定分词器
"analyzer":"ik_max_word",
#指定当前的field可以被作为查询的条件
"index":true,
#是否需要额外存储
"store":false
},
"author":{
"type":"keyword"
},
"count":{
"type":"long"
},
"on-sale":{
"type":"date",
#指定时间类型的格式化方式
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"descr":{
"type":"text",
"analyzer":"ik_max_word"
}
}
}
}
}
3.6 文档操作
文档在ES服务中的唯一标识, _indx ,_type,_id 三个内容为组合,锁定一个文档,操作时添加还时修改操作,
3.6.1 新建文档
自动生成id
#添加文档,自动生成id
POST /book/novel
{
"name":"盘龙",
"author":"我吃西红柿",
"count":100000,
"on-sale":"2001-01-01",
"descr":"大小的血睛鬃毛狮,力大无穷的紫睛金毛猿,毁天灭地的九头蛇皇,携带着毁灭雷电的恐怖雷龙……这里无奇不有,这是一个广博的魔幻世界。强者可以站在黑色巨龙的头顶遨游天际,恐怖的魔法可以焚烧江河,可以毁灭城池,可以夷平山岳……"
}
#添加文档,手动指定id
PUT /book/novel/1
{
"name":"红楼梦",
"author":"曹雪芹",
"count":10000000,
"on-sale":"2501-01-01",
"descr":"中国古代章回体长篇小说,中国古典四大名著之一,一般认为是清代作家曹雪芹所著。小说以贾、史、王、薛四大家族的兴衰为背景,以富贵公子贾宝玉为视角,以贾宝玉与林黛玉、薛宝钗的爱情婚姻悲剧为主线,描绘了一批举止见识出于须眉之上的闺阁佳人的人生百态,展现了真正的人性美和悲剧美"
}
3.6.2 修改文档
1.覆盖式修改
#添加文档,手动指定id
PUT /book/novel/1
{
"name":"红楼梦",
"author":"曹雪芹",
"count":1000444,
"on-sale":"2501-01-01",
"descr":"中国古代章回体长篇小说,中国古典四大名著之一,一般认为是清代作家曹雪芹所著。小说以贾、史、王、薛四大家族的兴衰为背景,以富贵公子贾宝玉为视角,以贾宝玉与林黛玉、薛宝钗的爱情婚姻悲剧为主线,描绘了一批举止见识出于须眉之上的闺阁佳人的人生百态,展现了真正的人性美和悲剧美"
}
2.使用doc修改方式
#修改文档,使用doc 方式
POST /book/novel/1/_update
{
"doc":{
#指定需要修改的field和对应的值
"count":566666
}
}
3.6.3 删除文档
#根据id删除文档
DELETE /book/novel/3mEnk3MBaSKoGN4T2olw
4.java 操作ElasticSearch
4.1 java 连接ES
创建maven工程
导入依赖
<!-- 1.elasticsearch-->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>6.8.10</version>
</dependency>
<!-- 2.elasticsearch 高级API-->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>6.8.10</version>
</dependency>
<!-- 3.junit-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<!-- 4.lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.16.22</version>
</dependency>
创建client链接
package com.utils;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
public class EsClient {
public static RestHighLevelClient getClient(){
// 创建 HttpHost
HttpHost httpHost = new HttpHost("127.0.0.1",9200);
// 创建 RestClientBuilder
RestClientBuilder builder = RestClient.builder(httpHost);
// 创建 RestHighLevelClient
RestHighLevelClient client = new RestHighLevelClient(builder);
return client;
}
}
4.2创建索引
package com.test;
import com.utils.EsClient;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.json.JsonXContent;
import org.junit.Test;
public class Demo2 {
RestHighLevelClient client = EsClient.getClient();
String index = "person";
String type="man";
@Test
public void createIndx() throws Exception{
// 1.准备关于索引的setting
Settings.Builder settings = Settings.builder()
.put("number_of_shards", 2)
.put("number_of_replicas", 1);
// 2.准备关于索引的mapping
XContentBuilder mappings = JsonXContent.contentBuilder()
.startObject()
.startObject("properties")
.startObject("name")
.field("type", "text")
.endObject()
.startObject("age")
.field("type", "integer")
.endObject()
.startObject("birthday")
.field("type", "date")
.field("format", "yyyy-MM-dd")
.endObject()
.endObject()
.endObject();
// 3.将settings和mappings 封装到到一个Request对象中
CreateIndexRequest request = new CreateIndexRequest(index)
.settings(settings)
.mapping(type,mappings);
// 4.使用client 去连接ES
CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT);
System.out.println("response:"+response.toString());
}
}
4.3 检查索引是否存在,删除索引
4.3.1 检查索引存在
package com.test;
import com.utils.EsClient;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.json.JsonXContent;
import org.junit.Test;
import java.io.IOException;
public class Demo2 {
RestHighLevelClient client = EsClient.getClient();
String index = "person";
String type="man";
@Test
public void existTest() throws IOException {
// 1.准备request 对象
GetIndexRequest request = new GetIndexRequest(index);
// 2.通过client 去 操作
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
// 3输出结果
System.out.println(exists);
}
}
4.3.2 删除索引
package com.test;
import com.utils.EsClient;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.json.JsonXContent;
import org.junit.Test;
import java.io.IOException;
public class Demo2 {
RestHighLevelClient client = EsClient.getClient();
String index = "person";
String type="man";
@Test
public void testDelete() throws IOException {
// 1.获取request
DeleteIndexRequest request = new DeleteIndexRequest(index);
// 2.使用client 操作request
AcknowledgedResponse delete = client.indices().delete(request, RequestOptions.DEFAULT);
// 3.输出结果
System.out.println(delete.isAcknowledged());
}
}
4.4 Java操作文档
4.4.1 添加文档操作
public class Demo3 {
ObjectMapper mapper = new ObjectMapper();
RestHighLevelClient client = EsClient.getClient();
String index

最低0.47元/天 解锁文章
965

被折叠的 条评论
为什么被折叠?



