Sequence-to-Sequence Model (Seq2Seq)
用Seq2Seq实现机器翻译:多对多问题
机器翻译数据Machine Translation Data
http://www.manythings.org/anki/

数据处理:大小写,拼写错误等(数据预处理)->tokenization(它可以是char-level也可以是word-level的 )->建立两个字典(一个英语一个德语的,因为每种语言使用的字母个数或者词语构造不一样)

英语->德语:

Seq2Seq Model
一个编码器encoder,一个解码器decoder
encoder的最终输出是最后的状态h和传输带c
decoder的初始状态是encoder的最终输出
预测p,p作为标签
计算损失函数loss,反向传播更新模型参数
如下图,当前的标签是‘m’

不断重复上述过程,直到输出终止符

每一轮的状态h,c都会更新
decoder的输出是每个字符的概率值



被折叠的 条评论
为什么被折叠?



