独立性分析——Projection correlation between two random vectors

致谢:Thanks to my wife!感谢智慧与美貌并存的(某人要求必须加)老婆举办的论文研讨班,让我看懂了一篇篇最新的统计理论论文,激发了我的兴趣及研究热情~

我从2016年开始关注随机向量/变量的相关性/独立性分析。起初,对Fosdick et al.[2]使用Wilks’ lambda统计量分析网络邻接矩阵低维隐含因子与节点属性间依赖性的方法很感兴趣,但该方法假设隐含因子与节点属性均服从正态分布,而且只能分析相关性。2017年秋天,听了首师大崔恒健老师报告,他们基于前序工作[3]提出了Mean Variance Test,可分析一个连续型随机变量与一个离散型随机变量间的独立性,不需要分布假定,而且计算复杂度很低。如崔老师所说,该方法“又要马儿跑得快,又要马儿不吃草”,^_^。

当然,仍有继续研究的空间。例如, 如何分析连续型随机变量间的独立性?(可将其中一个连续型变量离散化,但这并不是个好策略)如何分析随机向量间的独立性?(分析高维SNP与多个疾病表型间的独立性)这就是 “Projection correlation between two random vectors”[1]的工作。该文是发表在统计领域四大顶级期刊之一的Biometrika,作者是Li-ping Zhu领衔的几位大牛。该文确实有很多巧妙之处,例如将独立性分析转化为协方差分析(线性相关性分析),但计算复杂度不低(貌似是

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值