题目描述
把只包含质因子2、3和5的数称作丑数(Ugly Number)。
例如6、8都是丑数,但14不是,因为它包含质因子7。
习惯上我们把1当做是第一个丑数。
求按从小到大的顺序的第N个丑数。
题目分析
分为两种方法: 第一种是迭代求解 (看能否由2,3,5除尽)
第一种方法
牛客的判题机好像有问题, 这个方法始终是过不了的, 不过是一种解法.
// 判断一个数是否为丑数
public boolean isUglyNumber(int num) {
while (num % 2 == 0) num /= 2;
while (num % 3 == 0) num /= 3;
while (num % 5 == 0) num /= 5;
return (num == 1);
}
// 第二种方法: 暴力求解
public int GetUglyNumber_Solution2(int index) {
//if (index <= 0) return 0;
int num = 0, cnt = 0;
while (cnt < index) {
num++;
if (isUglyNumber(num)) cnt++;
}
return num;
}
第二种方法 (推荐)
第二种方法是定义三个指针 p2, p3, p5, 每次都求其计算后最小的放入下一位.
核心思想: 一个丑数的2倍/3倍/5倍的倍数, 必定是一个丑数!
基于这个思想, 我们可以每次把计算好的最小的丑数添加进来.
// 第一种方法(推荐), 使用三个指针
public int GetUglyNumber_Solution1(int index) {
if (index <= 0) return 0;
int[] res = new int[index];
res[0] = 1;
int p2 = 0, p3 = 0, p5 = 0, cur = 1;
while (cur < index) {
res[cur] = Math.min(res[p2]*2, Math.min(res[p3]*3, res[p5]*5));
// 这里有可能发生两个值相同的情况, 所以都跳过
if (res[cur] == res[p2]*2) p2++;
if (res[cur] == res[p3]*3) p3++;
if (res[cur] == res[p5]*5) p5++;
cur++;
}
return res[index - 1];
}

被折叠的 条评论
为什么被折叠?



