知识干货: GPU关键参数和应用场景

本文介绍了GPU在云计算、大数据和人工智能背景下的重要性,强调其在并行计算中的优势。主要内容包括GPU与CPU的区别、GPU的关键参数如CUDA核心、显存容量、显存位宽、显存频率和显存带宽等,并探讨了GPU在深度学习、科学计算、专业图形处理和GPU加速计算等领域的应用。此外,还提到了Nvidia的GPU产品系列及其适用场景。
摘要由CSDN通过智能技术生成

640?wx_fmt=jpeg

640?wx_fmt=gif

随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。


故此,笔者对算力服务器相关知识做了梳理,整理成“数据中心服务器知识全解”电子书,全书共190页,分18个章节。全书简要目录如下(详解目录和内容请通过“阅读原文”获取)


目录(简略) 一、 服务器处理器芯片概述 1

1.1 ARM处理器和厂商介绍 2

1.1.1 ARM处理器架构新进展 8

1.1.2 ARM处理器的主流玩家 10

1.1.3 业界对ARM技术发展态度 10

1.2 RISC-V处理器和厂商介绍 11

1.3 MIPS处理器和厂商介绍 15

1.3.1 龙芯产品和新进展 15

1.4 Alpha处理器和厂商介绍 17

二、 处理器生态和软件堆栈 18

2.1 处理器软件堆栈架构概述 19

2.2  操作系统和预置软件堆栈 20

2.2.1 原生操作系统支持介绍 20

2.2.2 操作系统预置应用程序 20

2.3 通用应用程序移植分析 20

2.3.1 解释型语言应用程序移植 21

2.3.2 编译型语言应用程序移植 21

2.3.3 应用程序安装包 22

2.3.4 ARM与X86编译差异与解决方法 22

2.3.5 改善应用程序并发计算能力 24

三、 RISC处理器几个关键知识和对比 25 四、 服务器基础知识概述 30
  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值