语音信号共振峰频率的倒谱法估计及其matlab仿真学习
语音信号的共振峰频率倒谱法估计是语音信号处理中常见的一种方法。本文将详细介绍倒谱法估计方法以及在matlab中的仿真实现。
倒谱法估计的基本原理是通过对语音信号进行滤波,提取出共振峰的频率信息,进而对语音信号进行分析和处理。具体的步骤如下:
-
对语音信号进行帧分割:将长时语音信号切分成多个短时帧,每个帧内的信号是稳态的。
-
对每个帧进行预加重:预加重是一种高通滤波器,可以强化高频成分,抑制低频成分,使得语音信号更容易被分析。
-
对预加重后的信号进行汉明窗加窗:汉明窗可以减少帧边缘处的信号失真。
-
对加窗后的信号进行FFT变换并求取功率谱密度:这一步骤可以得到语音信号的频域图像。
-
对功率谱密度进行对数运算并使用倒谱变换:倒谱变换可以将频域中的乘法运算变为加法运算,方便后续处理。
-
通过寻找倒谱序列中的峰值点,即可得到共振峰的位置。
-
根据共振峰的位置计算出共振峰的频率。
下面是一份matlab代码实现共振峰频率倒谱法估计:
% 读取音频文件
本文详细介绍了语音信号处理中的倒谱法估计,包括帧分割、预加重、汉明窗加窗、FFT变换、功率谱密度计算、倒谱变换和共振峰频率计算等步骤。并通过matlab代码实现对音频文件的共振峰频率倒谱法估计,同时绘制了频谱图和倒谱图。
订阅专栏 解锁全文
251

被折叠的 条评论
为什么被折叠?



