基于支持向量机的车牌分割识别算法及Matlab仿真

143 篇文章 ¥59.90 ¥99.00
本文探讨了基于支持向量机(SVM)的车牌识别算法,包括图像预处理、车牌定位、字符分割、特征提取和SVM分类。通过Matlab实现了该算法,具有高识别准确率和稳定性,适用于实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于支持向量机的车牌分割识别算法及Matlab仿真

支持向量机(Support Vector Machine,SVM)是一种非参数的模式识别技术,广泛应用于分类、回归、异常检测等领域。本文将介绍基于SVM的车牌分割识别算法,并提供Matlab仿真源代码。

一、算法原理

  1. 图像预处理

(1)读入彩色车牌图像并转化为灰度图像。

(2)对灰度图像进行高斯滤波和中值滤波,去除噪声。

(3)对滤波后的图像进行Sobel算子边缘检测,得到车牌图像的边缘信息。

  1. 车牌定位

对边缘检测后的图像进行二值化处理,利用形态学操作得到矩形区域,该区域即为车牌的位置。

  1. 字符分割

对车牌进行字符分割,将车牌上的字符分为单个字符。分割方法可以采用竖直投影法或者基于像素间距离的方法。

  1. 特征提取

对每个字符进行特征提取,包括灰度共生矩阵、梯度直方图、角二度矩等,将其转化为向量表示。

  1. SVM分类

利用已有的训练集对字符进行SVM分类,得到字符的类别标签。

  1. 车牌识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值