基于支持向量机的车牌分割识别算法及Matlab仿真
支持向量机(Support Vector Machine,SVM)是一种非参数的模式识别技术,广泛应用于分类、回归、异常检测等领域。本文将介绍基于SVM的车牌分割识别算法,并提供Matlab仿真源代码。
一、算法原理
- 图像预处理
(1)读入彩色车牌图像并转化为灰度图像。
(2)对灰度图像进行高斯滤波和中值滤波,去除噪声。
(3)对滤波后的图像进行Sobel算子边缘检测,得到车牌图像的边缘信息。
- 车牌定位
对边缘检测后的图像进行二值化处理,利用形态学操作得到矩形区域,该区域即为车牌的位置。
- 字符分割
对车牌进行字符分割,将车牌上的字符分为单个字符。分割方法可以采用竖直投影法或者基于像素间距离的方法。
- 特征提取
对每个字符进行特征提取,包括灰度共生矩阵、梯度直方图、角二度矩等,将其转化为向量表示。
- SVM分类
利用已有的训练集对字符进行SVM分类,得到字符的类别标签。
- 车牌识别
将
本文探讨了基于支持向量机(SVM)的车牌识别算法,包括图像预处理、车牌定位、字符分割、特征提取和SVM分类。通过Matlab实现了该算法,具有高识别准确率和稳定性,适用于实际应用。
订阅专栏 解锁全文
230

被折叠的 条评论
为什么被折叠?



