基于卷积神经网络(CNN)的数据回归预测(附带Matlab代码)

143 篇文章 37 订阅 ¥59.90 ¥99.00
本文介绍了如何使用卷积神经网络(CNN)在Matlab中进行数据回归预测,详细阐述了数据预处理、CNN模型构建、训练选项设置、模型训练、预测及结果评估的步骤,并提供了相应的Matlab代码示例。
摘要由CSDN通过智能技术生成

基于卷积神经网络(CNN)的数据回归预测(附带Matlab代码)

在机器学习和深度学习领域,卷积神经网络(Convolutional Neural Network, CNN)是一种广泛应用于图像处理和模式识别任务的神经网络模型。CNN通过在输入数据上使用卷积操作来提取特征,并利用这些特征进行分类、检测或回归等任务。本文将介绍如何使用CNN实现数据回归预测,并附带相应的Matlab代码。

首先,我们需要准备数据集。数据集应包含输入特征和对应的目标值。在本例中,假设我们有一个包含多个样本的数据集,每个样本有一个输入特征矩阵X和一个目标值向量y。输入特征矩阵X的形状为[m, n, d],其中m是样本数量,n和d分别是输入特征的高度和宽度。目标值向量y的形状为[m, 1]。可以根据具体问题进行数据预处理,例如归一化或标准化。

接下来,我们将使用Matlab中的深度学习工具箱来建立CNN模型。以下是一个简单的CNN模型示例:

% 创建CNN模型
model = [
    imageInputLayer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值