不是线程的安全
面试官问:“什么是线程安全”,如果你不能很好的回答,那就请往下看吧。
论语中有句话叫“学而优则仕”,相信很多人都觉得是“学习好了可以做官”。然而,这样理解却是错的。切记望文生义。
同理,“线程安全”也不是指线程的安全,而是指内存的安全。为什么如此说呢?这和操作系统有关。
目前主流操作系统都是多任务的,即多个进程同时运行。为了保证安全,每个进程只能访问分配给自己的内存空间,而不能访问别的进程的,这是由操作系统保障的。
在每个进程的内存空间中都会有一块特殊的公共区域,通常称为堆(内存)。进程内的所有线程都可以访问到该区域,这就是造成问题的潜在原因。
假设某个线程把数据处理到一半,觉得很累,就去休息了一会,回来准备接着处理,却发现数据已经被修改了,不是自己离开时的样子了。可能被其它线程修改了。
比如把你住的小区看作一个进程,小区里的道路/绿化等就属于公共区域。你拿1万块钱往地上一扔,就回家睡觉去了。睡醒后你打算去把它捡回来,发现钱已经不见了。可能被别人拿走了。
因为公共区域人来人往,你放的东西在没有看管措施时,一定是不安全的。内存中的情况亦然如此。
所以线程安全指的是,在堆内存中的数据由于可以被任何线程访问到,在没有限制的情况下存在被意外修改的风险。
即堆内存空间在没有保护机制的情况下,对多线程来说是不安全的地方,因为你放进去的数据,可能被别的线程“破坏”。
那我们该怎么办呢?解决问题的过程其实就是一个取舍的过程,不同的解决方案有不同的侧重点。
私有的东西就不该让别人知道
现实中很多人都会把1万块钱藏着掖着,不让无关的人知道,所以根本不可能扔到大马路上。因为这钱是你的私有物品。
在程序中也是这样的,所以操作系统会为每个线程分配属于它自己的内存空间,通常称为栈内存,其它线程无权访问。这也是由操作系统保障的。
如果一些数据只有某个线程会使用,其它线程不能操作也不需要操作,这些数据就可以放入线程的栈内存中。较为常见的就是局部变量。
double avgScore(double[] scores) { double sum = 0; for (double score : scores) { sum += score; } int count = scores.length; double avg = sum / count; return avg; }
这里的变量sum,count,avg都是局部变量,它们都会被分配在线程栈内存中。
假如现在A线程来执行这个方法,这些变量会在A的栈内存分配。与此同时,B线程也来执行这个方法,这些变量也会在B的栈内存中分配。
也就是说这些局部变量会在每个线程的栈内存中都分配一份。由于线程的栈内存只能自己访问,所以栈内存中的变量只属于自己,其它线程根本就不知道。
就像每个人的家只属于自己,其他人不能进来。所以你把1万块钱放到家里,其他人是不会知道的。且一般还会放到某个房间里,而不是仍在客厅的桌子上。
所以把自己的东西放到自己的私人地盘,是安全的,因为其他人无法知道。而且越隐私的地方越好。
大家不要抢,人人有份
相信聪明的你已经发现,上面的解决方案是基于“位置”的。因为你放东西的“位置”只有你自己知道(或能到达),所以东西是安全的,因此这份安全是由“位置”来保障的。
在程序里就对应于方法的局部变量。局部变量之所以是安全的,就是因为定义它的“位置”是在方法里。这样一来安全是达到了,但是它的使用范围也就被限制在这个方法里了,其它方法想用也不用了啦。
现实中往往会有一个变量需要多个方法都能够使用的情况,此时定义这个变量的“位置”就不能在方法里面了,而应该在方法外面。即从(方法的)局部变量变为(类的)成员变量,其实就是“位置”发生了变化。
那么按照主流编程语言的规定,类的成员变量不能再分配在线程的栈内存中,而应该分配在公共的堆内存中。其实也就是变量在内存中的“位置”发生了变化,由一个私有区域来到了公共区域。因此潜在的安全风险也随之而来。
那怎么保证在公共区域的东西安全呢?答案就是,大家不要抢,人人有份。设想你在街头免费发放矿泉水,来了1万人,你却只有1千瓶水,结果可想而知,一拥而上,场面失守。但如果你有10万瓶水,大家一看,水多着呢,不用着急,一个个排着队来,因为肯定会领到。
东西多了,自然就不值钱了,从另一个角度来说,也就安全了。大街上的共享单车,现在都很安全,因为太多了,到处都是,都长得一样,所以连搞破坏的人都放弃了。因此要让一个东西安全,就疯狂的copy它吧。
回到程序里,要让公共区域堆内存中的数据对于每个线程都是安全的,那就每个线程都拷贝它一份,每个线程只处理自己的这一份拷贝而不去影响别的线程的,这不就安全了嘛。相信你已经猜到了,我要表达的就是ThreadLocal类了。
class StudentAssistant { ThreadLocal<String> realName = new ThreadLocal<>(); ThreadLocal<Double> totalScore = new ThreadLocal<>(); String determineDegree() { double score = totalScore.get(); if (score >= 90) { return "A"; } if (score >= 80) { return "B"; } if (score >= 70) { return "C"; } if (score >= 60) { return "D"; } return "E"; } double determineOptionalcourseScore() { double score = totalScore.get(); if (score >= 90) { return 10; } if (score >= 80) { return 20; } if (score >= 70) { return 30; } if (score >= 60) { return 40; } return 60; } }
这个学生助手类有两个成员变量,realName和totalScore,都是ThreadLocal类型的。每个线程在运行时都会拷贝一份存储到自己的本地。
A线程运行的是“张三”和“90”,那么这两个数据“张三”和“90”是存储到A线程对象(Thread类的实例对象)的成员变量里去了。假设此时B线程也在运行,是“李四”和“85”,那么“李四”和“85”这两个数据是存储到了B线程对象(Thread类的实例对象)的成员变量里去了。
线程类(Thread)有一个成员变量,类似于Map类型的,专门用于存储ThreadLocal类型的数据。从逻辑从属关系来讲,这些ThreadLocal数据是属于Thread类的成员变量级别的。从所在“位置”的角度来讲,这些ThreadLocal数据是分配在公共区域的堆内存中的。
说的直白一些,就是把堆内存中的一个数据复制N份,每个线程认领1份,同时规定好,每个线程只能玩自己的那份,不准影响别人的。
需要说明的是这N份数据都还是存储在公共区域堆内存里的,经常听到的“线程本地”,是从逻辑从属关系上来讲的,这些数据和线程一一对应,仿佛成了线程自己“领地”的东西了。其实从数据所在“位置”的角度来讲,它们都位于公共的堆内存中,只不过被线程认领了而已。这一点我要特地强调一下。
其实就像大街上的共享单车。原来只有1辆,大家抢着骑,老出问题。现在从这1辆复制出N辆,每人1辆,各骑各的,问题得解。共享单车就是数据,你就是线程。骑行期间,这辆单车从逻辑上来讲是属于你的,从所在位置上来讲还是在大街上这个公共区域的,因为你发现每个小区大门口都贴着“共享单车,禁止入门”。哈哈哈哈。
共享单车是不是和ThreadLocal很像呀。再重申一遍,ThreadLocal就是,把一个数据复制N份,每个线程认领一份,各玩各的,互不影响。
只能看,不能摸
放在公共区域的东西,只是存在潜在的安全风险,并不是说一定就不安全。有些东西虽然也在公共区域放着,但也是十分安全的。比如你在大街上放一个上百吨的石头雕像,就非常安全,因为大家都弄不动它。
再比如你去旅游时,经常发现一些珍贵的东西,会被用铁栅栏围起来,上面挂一个牌子,写着“只能看,不能摸”。当然可以国际化一点,“only look,don't touch”。这也是很安全的,因为光看几眼是不可能看坏的。
回到程序里,这种情况就属于,只能读取,不能修改。其实就是常量或只读变量,它们对于多线程是安全的,想改也改不了。
class StudentAssistant { final double passScore = 60; }
比如把及格分数设定为60分,在前面加上一个final,这样所有线程都动不了它了。这就很安全了。
小节一下:以上三种解决方案,其实都是在“耍花招”。
第一种,找个只有自己知道的地方藏起来,当然安全了。
第二种,每人复制1份,各玩各的,互不影响,当然也安全了。
第三种,更狠了,直接规定,只能读取,禁止修改,当然也安全了。
是不是都在“避重就轻”呀。如果这三种方法都解决不了,该怎么办呢?Don't worry,just continue reading。
没有规则,那就先入为主
前面给出的三种方案,有点“理想化”了。现实中的情况其实是非常混乱嘈杂的,没有规则的。
比如在中午高峰期你去饭店吃饭,进门后发现只剩一个空桌子了,你心想先去点餐吧,回来就坐这里吧。当你点完餐回来后,发现已经被别人捷足先登了。
因为桌子是属于公共区域的物品,任何人都可以坐,那就只能谁先抢到谁坐。虽然你在人群中曾多看了它一眼,但它并不会记住你容颜。
解决方法就不用我说了吧,让一个人在那儿看着座位,其它人去点餐。这样当别人再来的时候,你就可以理直气壮的说,“不好意思,这个座位,我,已经占了”。
我再次相信聪明的你已经猜到了我要说的东西了,没错,就是(互斥)锁。
回到程序里,如果公共区域(堆内存)的数据,要被多个线程操作时,为了确保数据的安全(或一致)性,需要在数据旁边放一把锁,要想操作数据,先获取锁再说吧。
假设一个线程来到数据跟前一看,发现锁是空闲的,没有人持有。于是它就拿到了这把锁,然后开始操作数据,干了一会活,累了,就去休息了。
这时,又来了一个线程,发现锁被别人持有着,按照规定,它不能操作数据,因为它无法得到这把锁。当然,它可以选择等待,或放弃,转而去干别的。
第一个线程之所以敢大胆的去睡觉,就是因为它手里拿着锁呢,其它线程是不可能操作数据的。当它回来后继续把数据操作完,就可以把锁给释放了。锁再次回到空闲状态,其它线程就可以来抢这把锁了。还是谁先抢到锁谁操作数据。
class ClassAssistant { double totalScore = 60; final Lock lock = new Lock(); void addScore(double score) { lock.obtain(); totalScore += score; lock.release(); } void subScore(double score) { lock.obtain(); totalScore -= score; lock.release(); } }
假定一个班级的初始分数是60分,这个班级抽出10名学生来同时参加10个不同的答题节目,每个学生答对一次为班级加上5分,答错一次减去5分。因为10个学生一起进行,所以这一定是一个并发情形。
因此加分和减分这两个方法被并发的调用,它们共同操作总分数。为了保证数据的一致性,需要在每次操作前先获取锁,操作完成后再释放锁。
相信世界充满爱,即使被伤害
再回到一开始的例子,假如你往地上仍1万块钱,是不是一定会丢呢?这要看情况了,如果是在人来人往的都市,可以说肯定会丢的。如果你跑到无人区扔地上,可以说肯定不会丢。
可以看到,都是把东西无保护的放到公共区域里,结果却相差很大。这说明安全问题还和公共区域的环境状况有关系。
比如我把数据放到公共区域的堆内存中,但是始终都只会有1个线程,也就是单线程模型,那这数据肯定是安全的。
再者说,2个线程操作同一个数据和200个线程操作同一个数据,这个数据的安全概率是完全不一样的。肯定线程越多数据不安全的概率越大,线程越少数据不安全的概率越小。取个极限情况,那就是只有1个线程,那不安全概率就是0,也就是安全的。
可能你又猜到了我想表达的内容了,没错,就是CAS。可能大家觉得既然锁可以解决问题,那就用锁得了,为啥又冒出了个CAS呢?
那是因为锁的获取和释放是要花费一定代价的,如果在线程数目特别少的时候,可能根本就不会有别的线程来操作数据,此时你还要获取锁和释放锁,可以说是一种浪费。
针对这种“地广人稀”的情况,专门提出了一种方法,叫CAS(Compare And Swap)。就是在并发很小的情况下,数据被意外修改的概率很低,但是又存在这种可能性,此时就用CAS。
假如一个线程操作数据,干了一半活,累了,想要去休息。(貌似今天的线程体质都不太好)。于是它记录下当前数据的状态(就是数据的值),回家睡觉了。
醒来后打算继续接着干活,但是又担心数据可能被修改了,于是就把睡觉前保存的数据状态拿出来和现在的数据状态比较一下,如果一样,说明自己在睡觉期间,数据没有被人动过(当然也有可能是先被改成了其它,然后又改回来了,这就是ABA问题了),那就接着继续干。如果不一样,说明数据已经被修改了,那之前做的那些操作其实都白瞎了,就干脆放弃,从头再重新开始处理一遍。
所以CAS这种方式适用于并发量不高的情况,也就是数据被意外修改的可能性较小的情况。如果并发量很高的话,你的数据一定会被修改,每次都要放弃,然后从头再来,这样反而花费的代价更大了,还不如直接加锁呢。
这里再解释下ABA问题,假如你睡觉前数据是5,醒来后数据还是5,并不能肯定数据没有被修改过。可能数据先被修改成8然后又改回到5,只是你不知道罢了。对于这个问题,其实也很好解决,再加一个版本号字段就行了,并规定只要修改数据,必须使版本号加1。
这样你睡觉前数据是5版本号是0,醒来后数据是5版本号是0,表明数据没有被修改。如果数据是5版本号是2,表明数据被改动了2次,先改为其它,然后又改回到5。
我再次相信聪明的你已经发现了,这里的CAS其实就是乐观锁,上一种方案里的获取锁和释放锁其实就是悲观锁。乐观锁持乐观态度,就是假设我的数据不会被意外修改,如果修改了,就放弃,从头再来。悲观锁持悲观态度,就是假设我的数据一定会被意外修改,那干脆直接加锁得了。
本文转载于博客园,原文:https://www.cnblogs.com/lixinjie/p/10817860.html