二进制状态压缩枚举子集

对于二进制状态 SSS,可以用此方法不重不漏地枚举出子状态:

for (int sub = S; sub; sub = (sub - 1) & S) {
	// sub 为 S 的子集
}

【证明】sub=(sub−1)∩Ssub = (sub - 1) \cap Ssub=(sub1)S 可知 subsubsub 每次必然会变小,于是我们只需要证明区间 ((sub−1)∩S,sub)\left((sub - 1) \cap S, sub\right)((sub1)S,sub) 中不存在 SSS 的子集。设 sub=(d1d2⋯dk10⋯0)2sub = (d_1d_2 \cdots d_k 10 \cdots 0)_2sub=(d1d2dk100)2,那么 sub−1=(d1d2⋯dk01⋯1)2sub - 1 = (d_1d_2 \cdots d_k 01 \cdots 1)_2sub1=(d1d2dk011)2,由于 subsubsubSSS 的子集,则 (d1d2⋯dk00⋯0)2(d_1d_2 \cdots d_k 00 \cdots 0)_2(d1d2dk000)2SSS 的子集,因此考虑 (d1d2⋯dk01⋯1)2∩S(d_1d_2 \cdots d_k 01 \cdots 1)_2 \cap S(d1d2dk011)2S,得到的一定是 ((d1d2⋯dk00⋯0)2,(d1d2⋯dk10⋯0)2)\left((d_1d_2 \cdots d_k 00 \cdots 0)_2, (d_1d_2 \cdots d_k 10 \cdots 0)_2\right)((d1d2dk000)2,(d1d2dk100)2) 中值最大的子集,问题得证。

【时间复杂度】 枚举单个状态的子集复杂度为 O(2m)O(2^m)O(2m)mmmSSS111 的个数)。考虑枚举全集 2n−12^n - 12n1 的每个子集的子集的时间复杂度:O(∑i=0n(Cni⋅2i))=O((1+2)n)=O(3n)O\left(\sum\limits_{i = 0}^{n} \left(C_{n}^{i} \cdot 2^i\right)\right) = O\left((1 + 2) ^ n\right) = O(3^n)O(i=0n(Cni2i))=O((1+2)n)=O(3n)(二项式定理:(1+x)n=∑i=0n(Cni⋅xi)(1+x)^n = \sum\limits_{i = 0}^{n} \left(C_{n}^{i} \cdot x^i\right)(1+x)n=i=0n(Cnixi))。

### 斯坦纳树的构造方法与算法实现 斯坦纳树问题的核心是构造一棵最小生成树,该树包含所有指定的关键节点(Steiner点),同时尽量减少非关键节点的数量。为了解决这一问题,通常采用动态规划(DP)结合最短路径算法(如SPFA或Dijkstra)来实现。以下是具体的构造方法和算法实现。 #### 1. 动态规划的状态定义 在斯坦纳树问题中,状态通常定义为 `dp[i][s]`,表示以第 `i` 个节点为根,覆盖点 `s` 的最小代价。其中: - `i` 表示当前节点。 - `s` 是一个二进制状态集合,表示需要覆盖的关键节点。 #### 2. 状态转移方程 状态转移分为两部分:子集枚举更新和节点间松弛操作。 ##### (1) 子集枚举更新 通过枚举子集的方式,更新当前节点的状态。具体转移方程如下: ```plaintext dp[i][s] = min(dp[i][x | now] + dp[i][(s - x) | now]) ``` 其中: - `x` 是 `s` 的子集。 - `now` 表示当前节点的状态。 通过以下代码可以实现子集枚举: ```cpp for (int x = (s - 1) & s; x; x = (x - 1) & s) { dp[i][s] = min(dp[i][s], dp[i][x] + dp[i][s - x]); } ``` ##### (2) 节点间松弛操作 利用最短路径算法(如SPFA或Dijkstra),更新不同节点之间的状态转移。具体转移方程如下: ```plaintext dp[i][s] = min(dp[i][s], dp[j][s] + cost[i][j]) ``` 其中: - `cost[i][j]` 表示从节点 `i` 到节点 `j` 的边权。 #### 3. 算法实现 以下是基于 SPFA 的斯坦纳树算法实现[^2]: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 105, MAXS = 1 << 10; int n, k, m; int dp[MAXN][MAXS]; bool visited[MAXN][MAXS]; vector<pair<int, int>> edges[MAXN]; // 存储图的邻接表 void spfa(int mask) { queue<pair<int, int>> q; memset(visited, 0, sizeof(visited)); for (int i = 1; i <= n; ++i) { if (dp[i][mask] < INF) { q.push({i, mask}); visited[i][mask] = true; } } while (!q.empty()) { pair<int, int> u = q.front(); q.pop(); visited[u.first][u.second] = false; for (auto &[v, w] : edges[u.first]) { if (dp[v][mask] > dp[u.first][mask] + w) { dp[v][mask] = dp[u.first][mask] + w; if (!visited[v][mask]) { visited[v][mask] = true; q.push({v, mask}); } } } } } int main() { cin >> n >> k >> m; for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; edges[u].emplace_back(v, w); edges[v].emplace_back(u, w); } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 1; i <= k; ++i) { int node; cin >> node; dp[node][1 << (i - 1)] = 0; } // 枚举所有可能的掩码 for (int mask = 1; mask < (1 << k); ++mask) { for (int i = 1; i <= n; ++i) { for (int sub = (mask - 1) & mask; sub; sub = (sub - 1) & mask) { dp[i][mask] = min(dp[i][mask], dp[i][sub] + dp[i][mask ^ sub]); } } spfa(mask); } int ans = INF; for (int i = 1; i <= n; ++i) { ans = min(ans, dp[i][(1 << k) - 1]); } cout << (ans == INF ? -1 : ans) << endl; return 0; } ``` #### 4. 关键点说明 - **状态压缩**:由于关键节点数目较少(通常不超过 10),可以通过二进制状态压缩来表示点。 - **最短路径算法**:SPFA 或 Dijkstra 可用于更新节点间的松弛操作。 - **子集枚举**:通过 `(s - 1) & s` 的方式高效枚举子集。 #### 5. 还原到原图 在求解过程中,可能会在度量闭包中进行计算。最终需要将结果映射回原图,并删除冗余边以确保结果是一棵树[^1]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值