暑假集训总结——区间DP,堆的概念及应用,STL(vector、set、pair、map、priority_queue),hash表,树状数组,图论

这篇博客是对暑假集训的学习总结,重点介绍了区间动态规划、二叉堆的概念与应用,以及STL中的vector、set、pair、map、priority_queue的使用。此外,还探讨了hash表、树状数组和图论的基础知识。通过实例和AC代码,详细解析了各种数据结构和算法的应用。
摘要由CSDN通过智能技术生成

序言:

经过长达十几天的集训,确实学了不少知识点。我想如果再不总结的话,6天之后又要忘完了。

所以发一篇具有总结回忆性的博客,供大家回忆。

目录会本人自己排列的时间的先后顺序来排列,可直接食用。

目录:

一 、 动态规划
    1.区间DP

二 、 STL
    1.vector
    2.pair
    3.set
    4.map
    5.priority_queue
三 、数据结构
    1.字符串hash
    2.hash表
    3.树状数组
    4.堆及其运用
四 、 图论
        最短路
        1.Floyd
        2.Dijkst
        3.SPFA
        4.Bellman-Ford
        及其优化
        优先队列 O(mlogn)
        fionacci堆O(nlogn + m)这个本人能力实在有限便不说了,想知道的可以去问问

动态规划

动态规划总共分为三个部分:
- 状态和状态变量

- 阶段和阶段变量

- 策略和最优策略

- 状态转移方程

什么是区间动态规划?

区间DP也是分为这三个部分,虽然它也是属于线性Dp的一种,但是它的阶段是以“区间长度”为单位。

区间DP的初始形态一般就由长度为 1 1 1的“元区间”所构成的。它需要用左端点、右端点描述每个维度,在一些特殊的题中有可能会用到中点。

第一题 石子合并:

合并石子1

若最初的的第 l l l堆石子和 r r r堆石子被合并在一起,则说明 l   r l~r l r之间的每堆石子也已经被合并,这样 l l l r r r才有可能相邻。

因此,在任何时刻,任意一堆石子均可以用一个闭区间[l,r]来描述,表示这一堆是由最初的第 l   r l~r l r堆石子合并成的。

所以假设 如果有3堆石子,
则有2种合并方案,((1,2),3)和(1,(2,3))
如果有k堆石子呢?
在这里插入图片描述
不管怎么合并,总之最后总会归结为2堆,如果我们把最后两堆分开,左边和右边无论怎么合并,都必须满足最优合并方案,整个问题才能得到最优解。

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;
int min(int x,int y){
   
	return x>y?y:x;
}
int dp[105][105];
int s[105];
int n,x,k;
int main(){
   
	scanf("%d",&n);
	memset(dp,0x3f3f3f3f,sizeof(dp));
	for(int i=1;i<=n;i++){
   
		scanf("%d",&x);
		s[i]=s[i-1]+x;
	}
	for(int i=1;i<=n;i++){
   
		dp[i][i]=0;
	}
	for(int len=2;len<=n;len++){
   
		for(int j=1;j<=n-len+1;j++){
   
			int r=j+len-1;
			for(int k=1;k<r;k++)
			dp[j][r]=min(dp[j][r],dp[j][k]+dp[k+1][r]);
			dp[j][r]+=(s[r]-s[j-1]);
		}
	}
	printf("%d",dp[1][n]);
	return 0;
}

第二题能量项链:

能量项链

这道题几乎只是与合并石子有点区别,此时它是一个环,序列的长度是合并石子的两倍。

只需要循环的长度变成两倍即可。

思路就是:

d p [ i ] [ j ] dp[i][j] dp[i][j] 表示合并区间 i i i j j j 的最大能量,

第一重循环表示珠子分组的终点,第二重循环的表示从珠子分组的起点 ,第三重循环表示截断的点。

AC代码:

#include<iostream>
using namespace std;
int n,e[205],f[205][205]={
   0};
int main()
{
   
    int i,j,k,mx=0;
    cin>>n;
    for(i=1;i<=n;i++){
   
        cin>>e[i];
        e[n+i]=e[i];
    }
    for(j=2;j<=2*n-1;j++)
        for(i=j-1;i>0&&j-i<n;i--)
            for(k=i;k<j;k++)
                f[i][j]=max(f[i][k]+f[k+1][j]+e[i]*e[k+1]*e[j+1],f[i][j]);
    for(i=1;i<=n;i++)
       mx=max(mx,f[i][i+n-1]);
   cout<<mx; 
   return 0;
}

前面的都是版题以及版题的变式

现在来一点不是板子题的题。

第三题戳西瓜

戳西瓜

从题来看,我第一次是没看懂是说的一个什么意思。

不过有各位大佬,鼎力相助我才读懂这道题,并进而AC这道题

首先分析一下如果我戳破了第 i i i个,那么会留下 i − 1 i-1 i1 i + 1 i+1 i+1,但是此时你的和却跟 i − 1 i-1 i1, i i i, i + 1 i+1 i+1都有关。

从这个条件不难看出它是一个(i-1,i+1)的开区间。

但是题目却要我们戳完所有的气球。怎么办呢?

这是我们就可以,设两个端点最左端点和最右端点分别为:

a [ 0 ] a[0] a[0] a [ n + 1 ] a[n+1] a[n+1]且初值都赋值为 1 1 1

现在就不存在存在 i − 1 i - 1 i1 i + 1 i + 1 i+1是开区间的情况了。

设状态 d p [ i ] [ j ] dp[i][j] dp[i][j],表示戳破第i个到第j个的西瓜。

目标为 d p [ 0 ] [ n + 1 ] dp[0][n + 1] dp[0][n+1]

气球 i i i 和气球 j j j 之间的所有气球都可能是最后被戳破的那一个,

假设最后戳破的为 k k k

因为最后戳的是 k k k所以要先把 i i i k k k的全部戳破,答案为 d p [ i ] [ k ] dp[i][k] dp[i][k]

然后 k k k j j j肯定也要戳完,答案为 d p [ k ] [ j ] dp[k][j] dp[k][j]

现在在气球 i i i到气球 j j j之间就只剩下 i i i, k k k, j j j了,

所以戳爆 k k k的价值就是 n u m s [ i ] ∗ n u m s [ k ] ∗ n u m s [ j ] nums[i]*nums[k]*nums[j] nums[i]nums[k]nums[j]

AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>

using namespace std;
int dp[505][505];
int a[505];
int main(){
   
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
   
		scanf("%d",&a[i]);
	}
	n++;
	a[0]=1;
	a[n+1]=1;
	for (int i = n; i >= 0; i--){
   
		for (int j = i + 1; j < n + 2; j++){
   
			for (int k = i + 1; k < j; k++) {
   
				dp[i][j]=max(dp[i][j], dp[i][k] + dp[k][j] + a[i]*a[j]*a[k]);
			}
		}
	}
	printf("%d",dp[0][n+1]);
	return 0;
}

二·二叉堆

在这之前我们需要一滴滴的知识储备就是,树。

完全二叉树:
在这里插入图片描述
如果一棵深度为k的二叉树,1至k-1层都是满的,即每层结点数满足2i-1,只有最下面一层的结点数小于2i-1,并且最下面一层的结点都集中在该层最左边的若干位置,则此二叉树称为完全二叉树。

那么我们所学的二叉堆呢,总的来说就是一个数组。

它可以被看作一棵完全二叉树。树中每个结点与数组中存放该结

点中值的那个元素相对应。如图所示::
在这里插入图片描述
在这里插入图片描述

设数组 A A A的长度为 l e n len len,二叉树的结点个数为 s i z e size size

s i z e ≤ l e n ize≤len izelen,则 A [ i ] A[i] A[i]存储二叉树中编号为i的结点值

( 1 1 1 i i i s i z e size size),而 A [ s i z e ] A[size] A[size]以后的元素并不属于相应的堆,

树的根为 A [ 1 ] A[1] A[1],并且利用完全二叉树的性质,

我们很容易求第 i i i个结点的父结点 f a ( i ) fa(i) fa(i)、左孩子 l c h ( i ) lch(i) lch(i)

右孩子 r c h ( i ) rch(i) rch(i)的下标,分别是 i / 2 i/2 i/2 2 i 2i 2i 2 i + 1 2i+1 2i+1

除了这一性质之外,同时对除根以外的每个结点i,A[fa(i)]≥A[i]。

即除根结点以外,所有结点的值都不得超过其父结点的值,

这样就推出,堆中最大元素存放在根结点中,

且每一结点的子树中的结点值都小于等于该结点的值,

这种二叉堆又称为“大根堆”;反之,称为“小根堆”。

堆一般有两个重要的操作, p u t put put(往堆中加入一个元素)和

g e t get get(从堆中取出并删除一个元素), p u t put put操作(也可用于建堆,

首先创建一个小根堆为例):

1、在堆尾加入一个元素,并把这个结点置为当前结点。

2、比较当前结点和它父结点的大小
如果当前结点小于父结点,则交换它们的值,并把父结点置为当前结点,
继续转2。
如果当前结点大于等于父结点,则转3。

3、结束。

以此循环 n n n次,即可建立一个小根堆出来。

具体的操作请见其他各大博客,均有提及。

那么现在来看一下建小根堆的代码:

#include <cstdio>
#include <algorithm>

using namespace std;
const int maxn = 15;
int heap[maxn], n, heap_size[maxn];
void PUT(int k){
   
	int fa, now;
	heap[++heap_size] = k;//把现在需要插入的数放到堆尾 
	now  = heap_size;//把堆尾的这个数设为当前操作数 
	while(now > 1){
   //向上与父节点比较知道比完了各节点结束 
		fa = now >> 1;
		if(heap[now] >= heap[fa])//不小于父节点的值就结束 
			break;
		swap(heap[now], heap[fa]);//交换函数 
		now  = fa;//交换后又继续往上比较 
	}
}

int main(){
   
	scanf("%d", &n);
	for(int i = 1;i <= n;i++){
   //插入输入 
		scanf("%d",&a);
		PUT(a);
	}
	for(int i = 1;i <= n;i ++){
   //输出小根堆 
		printf("%d", heap[i]);
	}
	return 0;
}

从堆中去除并删除的 g e t get get操作:
1、取出堆中根结点的值。

2、把堆的最后一个结点( h e a p s i z e heap_size heapsize)放到根的位置上,把根覆盖掉,堆长度减一。

3、把根结点置为当前父结点,即当前操作结点 n o w now now

4、如果 n o w now now无儿子( n o w > h e a p s i z e / 2 now>heap_size/2 now>heapsize/2),则转6;否则,把 n o w now now的两(或一)个儿子中值较小的那一个置为当前子结点 s o n son son

5、比较 n o w now now s o n son son的值,如果 n o w now now的值小于等于 s o n son son,转6;否则交换两个结点的值,把 n o w now now指向 s o n son son,转4。

6、结束。

由于技术问题,本人找不到这张流程图,在这里道歉。

那么就来看一下删除根节点操作的代码吧:

int Get(){
   
	int now, son ,res;
	res  = heap[1];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值