我看到一个关于联邦学习的系列学习,蛮有趣的,在此记录下,最后会附上原地址
一、漫画展示
这是一则关于联邦学习的漫画。
二、关于
1.漫画地址
漫画地址:https://federated.withgoogle.com
这个网站是由谷歌人工智能的联邦学习团队所作。
故事内容创作:Lucy Bellwood , Scott McCloud
艺术创作: Lucy Bellwood
本漫画根据知识共享署名非商业NoDerivative Works 3.0许可获得许可。
允许翻译。
2.漫画具体内容翻译
一天,小美从会议上回来,兴冲冲地告诉老板三毛:“boss,我知道怎么赢回咱们的顾客啦!”
老板三毛愁眉苦脸地说:“早该了,现在咱们的品牌一团乱麻。”
小美自信地说:“我学到了一种新的方法,可以处理我们的隐私问题并改进功能!那就是联邦学习。”
三毛疑惑了,联邦学习是啥?
"它允许用户在设备上保存数据的同时进行机器学习。它具有弹性,低冲击,安全——"小美话还没说完就被老板打断了。
“很好,我被你说服了,我会给你我们最好的一支团队!”,老板兴冲冲地去找人了,“当然是实习生啦~”
小美有瞬间的无语,“行吧,接受这个挑战。”
“嘿,大家好,我们先从一个假设的问题开始:我们需要在用户隐私数据上进行机器学习模型的训练。”小美开门见山地说。
(中间一串摸鱼动作)
小美指出:“机器学习模型的真实性能取决于用于训练它的数据的相关性。而最好的数据都存储在每天都是用的各种设备之中。”
但是实习生小蓝提出:“访问那些敏感数据不是你的应用程序崩溃的全部原因吗?”
“是的,没错,但是如果不把数据传出去呢?”小美说。
“那我就没法训练模型啦!”实习生大力说。
“不,你可以的。”小美神秘地说,“欢迎来到联邦学习的世界!”
“我们将在去中心化数据上训练一个集中式模型,设备上的数据能够训练一个更智能的中心模型,使得我们的用户体验更好。”
“但是因为数据不出设备,所以我们将模型传到个人设备上,并且并不是所有设备都强制参与,只有当设备符合条件时才参与,使得用户和设备不受模型训练的影响。”
这些设备子集在本地训练过后会把训练后的一些参数结果,并且为了防止服务器通过这些上传的参数来重构数据或模型,这些上传的数据都是加密的,并且可以使用服务器没有的密钥加密。
…
最后,大家都达成一致的时候,老板跑进来说,公司彻底破产啦!
然后大家愉快地组成了新的公司,除了老板,哈哈
总结
这个漫画就是从人们担心的点一点点提出联邦学习的优势所在,值得一看。